函数可变参数va_list、va_start、va_arg、va_end原理及使用方法

可变参数探析  
  在c/c++中函数可以有可变参数,最出名的自然是大名鼎鼎的printf.  
  int   printf(__in_z   __format_string   const   char   *   _Format,   ...);   //摘自VC8.0   C   library   head   file  
  其中的...即是c/c++中的可变参数的语法.  
  而可变参数是用如下四个宏(Macro)实现的.  
  va_list  
  va_start  
  va_arg  
  va_end  
  具体怎么用这四个宏来写带可变参数的函数,请参考任何一本   c   教材.  
  现摘录C语言开山之作 --- C   Language   Programming中的一个例子.  
  #include   <stdarg.h>  
  #include   <stdio.h>  
  void   minprintf(char   *fmt,   ...)  
  {  
  va_list   ap;  
  char   *p,   *sval;  
  int   ival;  
  double   dval;  
  va_start(ap,   fmt);  
  for(p   =   fmt;   *p;   p++)  
  {  
  if(*p   !=   '%')  
  {  
  putchar(*p);  
  continue;  
  }  
  switch(*++p)  
  {  
  case   'd':  
  ival   =   va_arg(ap,   int);  
  printf("%d",   ival);  
  break;  
  case   'f':  
  dval   =   va_arg(ap,   double);  
  printf("%f",   dval);  
  break;  
  case   's':  
  for(sval   =   va_arg(ap,   char*);   *sval;   sval++)  
  {  
  putchar(*sval);  
  }  
  break;  
  default:  
  putchar(*p);  
  break;  
  }  
  }  
  va_end(ap);  
  }  
  在VC8.0下添加下面的调用并编译.  
  int   main()  
  {  
  minprintf("%s   -   %d   -   %f   -   %d/n",   "aaa",   10,   2.34,   3);  
  return   0;  
  }  
  output:  
  F:/var_len_arg/Debug>var_len_arg.exe  
  aaa   -   10   -   2.340000   -   3  
  咱们看一下这四个宏的定义.  
  typedef   char   *   va_list;  
  va_list   只是 char   * 的代名词.  
  #define   va_start   _crt_va_start  
  #define   _crt_va_start(ap,v)   (   ap   =   (va_list)_ADDRESSOF(v)   +   _INTSIZEOF(v)   )  
  #define   _ADDRESSOF(v)   (   &reinterpret_cast<const   char   &>(v)   )  
  #define   _INTSIZEOF(n)   (   (sizeof(n)   +   sizeof(int)   -   1)   &   ~(sizeof(int)   -   1)   )  
  代换以下va_start(ap,   v)   (   ap   =   (   (   (char   *)&reinterpret_cast<const   char   &>(v)   )   +   /  
  (   (sizeof(v)   +   sizeof(int)   -   1)   &   ~(sizeof(int)   -   1)   )   )   )  
  v是某个参数,ap   =   v参数的地址   +   v参数的类型的大小(sizeof(v))   ,并对整数地址取整  
  罗索了这么多,这不就是使ap指向 v   参数的下一个参数的地址吗?  
  举个例子  
  va_start(ap,   fmt);  
  fmt是char   *,   是指针,即sizeof(char*)   =   4  
  ap   =   (&fmt   +   4   +   3)   &   0xFFFFFFFC0;  
  stack  
  |   |  
  |   ...   |  
  |___________|<---   ap   =   (&fmt   +   4   +   3)   &   0xFFFFFFFC0;  
  |   |  
  |   fmt   |  
  |___________|<-------   &fmt  
  |   |  
  |   |  
  #define   va_arg   _crt_va_arg  
  #define   _crt_va_arg(ap,t)   (   *(t   *)((ap   +=   _INTSIZEOF(t))   -   _INTSIZEOF(t))   )  
  代换以下   va_arg   (   *(t   *)((ap   +=   (   (sizeof(t)   +   sizeof(int)   -   1)   &   ~(sizeof(int)   -   1)   )   /  
  (   (sizeof(t)   +   sizeof(int)   -   1)   &   ~(sizeof(int)   -   1)   )   )  
  举个例子  
  ival   =   va_arg(ap,   int);  
  ival   =   (*(int   *)(((ap   +   sizeof(int))   &   0xFFFFFFFC0)   -   ((sizeof(int)   +   3)   &   0xFFFFFFFC0));  
  一句话,把ap所指向的4   bytes区域解释成int   type,并累增ap,使它指向下一个参数地址,   即ival   =   *ap++;  
  stack  
  |   |  
  |   2.34   |  
  |___________|   <---   new   ap   (va_arg(ap,   int)以后)  
  |   |  
  |   10   | 10   是 int   type,   正好占 4   个bytes   空间  
  |___________|   <---   ap   =   (&fmt   +   4   +   3)   &   0xFFFFFFFC0;  
  |   |  
  |   fmt   |  
  |___________|<-------   &fmt  
  |   |  
  |   |  
  那么为什么总有烦人的_INTSIZEOF(n)   (   (sizeof(n)   +   sizeof(int)   -   1)   &   ~(sizeof(int)   -   1)   )呢?  
  两个原因:  
  1.   每种类型所占空间是不一样的,比如   
  sizeof(int)   =   4  
  sizeof(double)   =   8  
  sizeof(char   *)   =   4  
  sizeof(char)   =   1  
  sizeof(short)   =   2  
  等等  
  (sizeof(n)   +   sizeof(int)   -   1)   &   ~(sizeof(int)   -   1)  
  ------  
  这就是上面画下划线的部分的作用  
  2.   每个参数的地址必须对齐在 4 字节边界  
  (sizeof(n)   +   sizeof(int)   -   1)   &   ~(sizeof(int)   -   1)  
  -------------------  
  这就是上面画下划线的部分的作用  
  #define   va_end   _crt_va_end  
  #define   _crt_va_end(ap)   (   ap   =   (va_list)0   )  
  等于空,完全可以不需要,估计只是为了与va_start匹配.(最起码在这里VC8.0   C   Library中是这样.)  
  minprintf("%s   -   %d   -   %f   -   %d/n",   "aaa",   10,   2.34,   3);  
  调用的stack如下:  
  stack  
  |   |  
  |   3   |  
  |___________|   <---   new   ap   (va_arg(ap,   double)以后)  
  |   |  
  |   |  
  |   |   sizeof(double)   =   8  
  |   |  
  |   2.34   |  
  |___________|   <---   new   ap   (va_arg(ap,   int)以后)  
  |   |  
  |   10   | 10   是 int   type,   正好占 4   个bytes   空间  
  |___________|   ap   =   (&fmt   +   4   +   3)   &   0xFFFFFFFC0;  
  |   |   va_list   ap;  
  |   fmt   |  
  |___________|   <-------   &fmt  
  |   |  
  |   |  
  上面的解释应该够明白了吧?  
  如果还有点糊涂,那没办法,只能看   cpu   怎么执行的了!

 

 

摘自:http://topic.csdn.net/t/20060824/18/4973562.html

 

 

 

 

2008年04月21日 星期一 上午 01:17

   chenxiaohua: http://blog.csdn.net/chenxiaohua/archive/2008/01/12/2039469.aspx

  1. 概述
    由于在C语言中没有函数重载,解决不定数目函数参数问题变得比较麻烦;即使采用C++,如果参数个数不能确定,也很难采用函数重载.对这种情况,有些人采用指针参数来解决问题.下面就c语言中处理不定参数数目的问题进行讨论.
  2. 定义
    大家先看几宏.
    在VC++6.0的include有一个stdarg.h头文件,有如下几个宏定义:
    #define _INTSIZEOF(n)   ((sizeof(n)+sizeof(int)-1)&~(sizeof(int) - 1) )
    #define va_start(ap,v) ( ap = (va_list)&v + _INTSIZEOF(v) )           //第一个可选参数地址
    #define va_arg(ap,t) ( *(t *)((ap += _INTSIZEOF(t)) - _INTSIZEOF(t)) ) //下一个参数地址
    #define va_end(ap)    ( ap = (va_list)0 )                            // 将指针置为无效
    如果对以上几个宏定义不理解,可以略过,接这看后面的内容.
  3. 参数在堆栈中分布位置
    在进程中,堆栈地址是从高到低分配的.当执行一个函数的时候,将参数列表入栈,压入堆栈的高地址部分,然后入栈函数的返回地址,接着入栈函数的执行代码, 这个入栈过程,堆栈地址不断递减,一些黑客就是在堆栈中修改函数返回地址,执行自己的代码来达到执行自己插入的代码段的目的.
    总之,函数在堆栈中的分布情况是:地址从高到低,依次是:函数参数列表,函数返回地址,函数执行代码段.
    堆栈中,各个函数的分布情况是倒序的.即最后一个参数在列表中地址最高部分,第一个参数在列表地址的最低部分.参数在堆栈中的分布情况如下:
    最后一个参数
    倒数第二个参数
    ...
    第一个参数
    函数返回地址
    函数代码段
  4. 示例代码
    void arg_test(int i, ...);
    int main(int argc,char *argv[])
    {
    int int_size = _INTSIZEOF(int);
    printf("int_size=%d/n", int_size);
    arg_test(0, 4);

    arg_cnt(4,1,2,3,4);
    return 0;
    }
    void arg_test(int i, ...)
    {
    int j=0;
    va_list arg_ptr;

    va_start(arg_ptr, i);
    printf("&i = %p/n", &i);//打印参数i在堆栈中的地址
    printf("arg_ptr = %p/n", arg_ptr);
    //打印va_start之后arg_ptr地址,
    //应该比参数i的地址高sizeof(int)个字节
    //这时arg_ptr指向下一个参数的地址

    j=*((int *)arg_ptr);
    printf("%d %d/n", i, j);
    j=va_arg(arg_ptr, int);
    printf("arg_ptr = %p/n", arg_ptr);
    //打印va_arg后arg_ptr的地址
    //应该比调用va_arg前高sizeof(int)个字节
    //这时arg_ptr指向下一个参数的地址
    va_end(arg_ptr);
    printf("%d %d/n", i, j);
    }
  5. 代码说明:
    int int_size = _INTSIZEOF(int);得到int类型所占字节数
    va_start(arg_ptr, i); 得到第一个可变参数地址,根据定义(va_list)&v得到起始参数的地址, 再加上_INTSIZEOF(v) ,就是其实参数下一个参数的地址,即第一个可变参数地址.
    j=va_arg(arg_ptr, int); 得到第一个参参数的值,并且arg_ptr指针上移一个_INTSIZEOF(int),即指向下一个可变参数的地址.
    va_end(arg_ptr);置空arg_ptr,即arg_ptr=0;
    总结:读取可变参数的过程其实就是堆栈中,使用指针,遍历堆栈段中的参数列表,从低地址到高地址一个一个地把参数内容读出来的过程.
  6. 在编程中应该注意的问题和解决办法
    虽然可以通过在堆栈中遍历参数列表来读出所有的可变参数,但是由于不知道可变参数有多少个,什么时候应该结束遍历,如果在堆栈中遍历太多,那么很可能读取一些无效的数据.
    解决办法:a.可以在第一个起始参数中指定参数个数,那么就可以在循环还中读取所有的可变参数;b.定义一个结束标记,在调用函数的时候,在最后一个参数中传递这个标记,这样在遍历可变参数的时候,可以根据这个标记结束可变参数的遍历;
    下面是一段示例代码:
    //第一个参数定义可选参数个数,用于循环取初参数内容
    void arg_cnt(int cnt, ...);
    int main(int argc,char *argv[])
    {
    int int_size = _INTSIZEOF(int);
    printf("int_size=%d/n", int_size);
    arg_cnt(4,1,2,3,4);
    return 0;
    }
    void arg_cnt(int cnt, ...)
    {
    int value=0;
    int i=0;
    int arg_cnt=cnt;
    va_list arg_ptr;
    va_start(arg_ptr, cnt);
    for(i = 0; i < cnt; i++)
    {
       value = va_arg(arg_ptr,int);
       printf("value%d=%d/n", i+1, value);
    }
    }

    虽然可以根据上面两个办法解决读取参数个数的问题,但是如果参数类型都是不定的,该怎么办,如果不知道参数的类型,即使读到了参数也没有办法进行处理.解 决办法:可以自定义一些可能出现的参数类型,这样在可变参数列表中,可以可变参数列表中的那类型,然后根据类型,读取可变参数值,并进行准确地转换.传递 参数的时候可以这样传递:参数数目,可变参数类型1,可变参数值1,可变参数类型2,可变参数值2,....
    这里给出一个完整的例子:
    #include <stdio.h>
    #include <stdarg.h>
    const int INT_TYPE   = 100000;
    const int STR_TYPE   = 100001;
    const int CHAR_TYPE   = 100002;
    const int LONG_TYPE   = 100003;
    const int FLOAT_TYPE = 100004;
    const int DOUBLE_TYPE = 100005;
    //第一个参数定义可选参数个数,用于循环取初参数内容
    //可变参数采用arg_type,arg_value...的形式传递,以处理不同的可变参数类型
    void arg_type(int cnt, ...);
    //第一个参数定义可选参数个数,用于循环取初参数内容
    void arg_cnt(int cnt, ...);
    //测试va_start,va_arg的使用方法,函数参数在堆栈中的地址分布情况
    void arg_test(int i, ...);
    int main(int argc,char *argv[])
    {
    int int_size = _INTSIZEOF(int);
    printf("int_size=%d/n", int_size);
    arg_test(0, 4);

    arg_cnt(4,1,2,3,4);
    arg_type(2, INT_TYPE, 222, STR_TYPE, "ok,hello world!");
    return 0;
    }
    void arg_test(int i, ...)
    {
    int j=0;
    va_list arg_ptr;

    va_start(arg_ptr, i);
    printf("&i = %p/n", &i);//打印参数i在堆栈中的地址
    printf("arg_ptr = %p/n", arg_ptr);
    //打印va_start之后arg_ptr地址,
    //应该比参数i的地址高sizeof(int)个字节
    //这时arg_ptr指向下一个参数的地址

    j=*((int *)arg_ptr);
    printf("%d %d/n", i, j);
    j=va_arg(arg_ptr, int);
    printf("arg_ptr = %p/n", arg_ptr);
    //打印va_arg后arg_ptr的地址
    //应该比调用va_arg前高sizeof(int)个字节
    //这时arg_ptr指向下一个参数的地址
    va_end(arg_ptr);
    printf("%d %d/n", i, j);
    }
    void arg_cnt(int cnt, ...)
    {
    int value=0;
    int i=0;
    int arg_cnt=cnt;
    va_list arg_ptr;
    va_start(arg_ptr, cnt);
    for(i = 0; i < cnt; i++)
    {
       value = va_arg(arg_ptr,int);
       printf("value%d=%d/n", i+1, value);
    }
    }
    void arg_type(int cnt, ...)
    {
    int arg_type = 0;
    int int_value=0;
    int i=0;
    int arg_cnt=cnt;
    char *str_value = NULL;
    va_list arg_ptr;
    va_start(arg_ptr, cnt);
    for(i = 0; i < cnt; i++)
    {
       arg_type = va_arg(arg_ptr,int);
       switch(arg_type)
       {
       case INT_TYPE:
        int_value = va_arg(arg_ptr,int);
        printf("value%d=%d/n", i+1, int_value);
        break;
       case STR_TYPE:
        str_value = va_arg(arg_ptr,char*);
        printf("value%d=%d/n", i+1, str_value);
        break;
       default:
        break;
       }
    }
    }

=======================================================================

有关VA_LIST的用法:

VA_LIST 是在C语言中解决变参问题的一组宏

VA_LIST的用法:     
       (1)首先在函数里定义一具VA_LIST型的变量,这个变量是指向参数的指针
      (2)然后用VA_START宏初始化变量刚定义的VA_LIST变量,这个宏的第二个参数是第一个可变参数的前一个参数,是一个固定的参数。
       (3)然后用VA_ARG返回可变的参数,VA_ARG的第二个参数是你要返回的参数的类型。
       (4)最后用VA_END宏结束可变参数的获取。然后你就可以在函数里使用第二个参数了。如果函数有多个可变参数的,依次调用VA_ARG获取各个参数。

VA_LIST在编译器中的处理:

(1)在运行VA_START(ap,v)以后,ap指向第一个可变参数在堆栈的地址。
(2)VA_ARG()取得类型t的可变参数值,在这步操作中首先apt = sizeof(t类型),让ap指向下一个参数的地址。然后返回ap-sizeof(t类型)的t类型*指针,这正是第一个可变参数在堆栈里的地址。然后用*取得这个地址的内容。
(3)VA_END(),X86平台定义为ap = ((char*)0),使ap不再指向堆栈,而是跟NULL一样,有些直接定义为((void*)0),这样编译器不会为VA_END产生代码,例如gcc在Linux的X86平台就是这样定义的。

要注意的是:由于参数的地址用于VA_START宏,所以参数不能声明为寄存器变量,或作为函数或数组类型。

使用VA_LIST应该注意的问题:
   (1)因为va_start, va_arg, va_end等定义成宏,所以它显得很愚蠢,可变参数的类型和个数完全在该函数中由程序代码控制,它并不能智能地识别不同参数的个数和类型. 也就是说,你想实现智能识别可变参数的话是要通过在自己的程序里作判断来实现的.
    (2)另外有一个问题,因为编译器对可变参数的函数的原型检查不够严格,对编程查错不利.不利于我们写出高质量的代码。
小结:可变参数的函数原理其实很简单,而VA系列是以宏定义来定义的,实现跟堆栈相关。我们写一个可变函数的C函数时,有利也有弊,所以在不必要的 场合,我们无需用到可变参数,如果在C++里,我们应该利用C++多态性来实现可变参数的功能,尽量避免用C语言的方式来实现。


==========================================================================

变长参数应用举例:

先得声明一个变长参数的变量va_list list
在使用前要先用va_start(list, last_param)对list进行初始化,last_param为最右边的已知参数,表示list
从last_param的下一个参数开始
va_arg(list, 类型)
最后不要忘了用va_end(list)

eg1:
#include<iostream>
#include<iomanip>
#include<stdarg.h>

using namespace std;

double average(int, ...);

int main()
{
    double w = 37.5, x = 22.5, y = 1.7, z = 10.2;

    cout << setiosflags(ios::fixed | ios::showpoint)
        << setprecision(1) << "w = " << w << "/nx = " << x
        << "/ny = " << y << "/nz = " << z << endl;

    cout << average(2, w, x) << endl;
    cout << average(3, w, x, y) << endl;
    cout << average(4, w, x, y, z) << endl;

    return 0;
}

double average(int i, ...)
{
    double total = 0;
    va_list ap;

    va_start(ap, i);

    for(int j = 1; j <= i; j++)
    {
        total += va_arg(ap, double);
    }

    va_end( ap );
    return total/i;
}


eg2:
#include<iostream.h>
#include <stdlib.h>
#include <stdarg.h>
void error(const char*format...);
void main()
{
    int a;
    char c='d';
    char s[100];
    error("Enter a string:");      //输入一个字符串
    cin>>s;
    error("Enter an integer:");    //输入一整数
    cin>>a;
    error("%s/n%d/n%c/n",s,a,c);   //打印输出

}
void error(const char*format...)    //实现像printf函数一样的打印输出功能
{
    int i;
    int j=0;
    va_list ap;
    va_start(ap,format);
    for(i=0;*(format+i)!=0;)
    {
        int in;
        char* pc;
        char d;
        if(*(format+i)=='%')
        {
            switch(*(format+i+1))
            {
            case'd':in=va_arg(ap,int);cout<<in;i=i+2;break;
            case's':pc=va_arg(ap,char*);cout<<pc;i=i+2;break;
            case'c':d=va_arg(ap,char);cout<<d;i=i+2;break;
            default:cout<<'%';i=i+1;break;
            }
        }
        else
        {
            cout<<*(format+i);
            i++;
        }

    }
}

================================================================

C++变长参数函数的用法

书上说,当无法列出传递函数的所有实参的类型和数目时,可用省略号指定参数表
(...)

如:void foo(...);
     void foo(parm_list,...);
void foo(...)
{
    //...
}
调用:foo(a,b,c);

就是不懂,把a,b,c的值传进函数里面后,用什么变量来接收???如果不能接收,(...)岂不是没意义?
还有就是不明白
int printf(const char*...);
printf("hello,&s/n",userName);

这个c的输出函数是怎么用(...)实现的.

首先函数体中声明一个va_list,然后用va_start函数来获取参数列表中的参数,使用完毕后调用va_end()结束。像这段代码:
void TestFun(char* pszDest, int DestLen, const char* pszFormat, ...)
{
va_list args;
va_start(args, pszFormat);
_vsnprintf(pszDest, DestLen, pszFormat, args);
va_end(args);
}

===========================================================

va_list的用法    
还记得printf函数调用的时候那个“...”吗?就是可以输入任意的参数。现在你用va_list也可以实现类似的函数声明,printf就是这样做的。

va_list args;                                                 //声明变量
va_start(args, before);                               //开始解析。args指向before后面的参数
参数类型 var = va_arg(args, 参数类型);     //取下一个参数并返回。args指向下一个参数
va_end(args);  

 

 

摘自:http://hi.baidu.com/flying5/blog/item/aedbe6108c9be8f9c3ce79bb.html

你可能感兴趣的:(函数可变参数va_list、va_start、va_arg、va_end原理及使用方法)