内核版本:2.6.12
一、系统总入口
Linux 内核为所有的与 socket 有关的操作的 API,提供了一个统一的系统调用入口,其代码在net/socket.c中:
asmlinkage long sys_socketcall(int call, unsigned long __user *args)
{
unsigned long a[6];
unsigned long a0,a1;
int err;
if(call<1||call>SYS_RECVMSG)
return -EINVAL;
/* copy_from_user should be SMP safe. */
if (copy_from_user(a, args, nargs[call]))
return -EFAULT;
a0=a[0];
a1=a[1];
switch(call)
{
case SYS_SOCKET:
err = sys_socket(a0,a1,a[2]);
break; case SYS_BIND:
err = sys_bind(a0,(struct sockaddr __user *)a1, a[2]);
break;
case SYS_CONNECT:
err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
break;
case SYS_LISTEN:
err = sys_listen(a0,a1);
break;
case SYS_ACCEPT:
err = sys_accept(a0,(struct sockaddr __user *)a1, (int __user *)a[2]);
break;
case SYS_GETSOCKNAME:
err = sys_getsockname(a0,(struct sockaddr __user *)a1, (int __user *)a[2]);
break;
case SYS_GETPEERNAME:
err = sys_getpeername(a0, (struct sockaddr __user *)a1, (int __user *)a[2]);
break;
case SYS_SOCKETPAIR:
err = sys_socketpair(a0,a1, a[2], (int __user *)a[3]);
break;
case SYS_SEND:
err = sys_send(a0, (void __user *)a1, a[2], a[3]);
break;
case SYS_SENDTO:
err = sys_sendto(a0,(void __user *)a1, a[2], a[3],
(struct sockaddr __user *)a[4], a[5]);
break;
case SYS_RECV:
err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
break;
case SYS_RECVFROM:
err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
(struct sockaddr __user *)a[4], (int __user *)a[5]);
break;
case SYS_SHUTDOWN:
err = sys_shutdown(a0,a1);
break;
case SYS_SETSOCKOPT:
err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
break;
case SYS_GETSOCKOPT:
err = sys_getsockopt(a0, a1, a[2], (char __user *)a[3], (int __user *)a[4]);
break; case SYS_SENDMSG:
err = sys_sendmsg(a0, (struct msghdr __user *) a1, a[2]);
break;
case SYS_RECVMSG:
err = sys_recvmsg(a0, (struct msghdr __user *) a1, a[2]);
break;
default:
err = -EINVAL;
break;
}
return err;
}
首先调用 copy_from_user将用户态参数拷贝至数组 a。但是问题在于,每个被调用的 API 的参数不尽相同,那么每次拷贝的字节在小如果断定? 来看其第三个参数 nargs[call],其中 call 是操作码,后面有个大大的 switch...case 就是判断它。对应的操作码定义在 include/linux/net.h:
#define SYS_SOCKET 1 /* sys_socket(2) */
#define SYS_BIND 2 /* sys_bind(2) */
#define SYS_CONNECT 3 /* sys_connect(2) */
#define SYS_LISTEN 4 /* sys_listen(2) */
#define SYS_ACCEPT 5 /* sys_accept(2) */
#define SYS_GETSOCKNAME 6 /* sys_getsockname(2) */
#define SYS_GETPEERNAME 7 /* sys_getpeername(2) */
#define SYS_SOCKETPAIR 8 /* sys_socketpair(2) */
#define SYS_SEND 9 /* sys_send(2) */
#define SYS_RECV 10 /* sys_recv(2) */
#define SYS_SENDTO 11 /* sys_sendto(2) */
#define SYS_RECVFROM 12 /* sys_recvfrom(2) */
#define SYS_SHUTDOWN 13 /* sys_shutdown(2) */
#define SYS_SETSOCKOPT 14 /* sys_setsockopt(2) */
#define SYS_GETSOCKOPT 15 /* sys_getsockopt(2) */
#define SYS_SENDMSG 16 /* sys_sendmsg(2) */
#define SYS_RECVMSG 17 /* sys_recvmsg(2) */[/code]
而数组 nargs则根据操作码的不同,计算对应的参数的空间大小:
/* Argument list sizes for sys_socketcall */
#define AL(x) ((x) * sizeof(unsigned long))
static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)};
#undef AL
当拷贝完成参数后,就进入一个 switch...case...判断操作码,跳转至对应的系统接口。
二、 sys_socket 函数
操作码 SYS_SOCKET 是由 sys_socket()实现的:
asmlinkage long sys_socket(int family, int type, int protocol)
{
int retval;
struct socket *sock;
retval = sock_create(family, type, protocol, &sock);
if (retval < 0)
goto out;
retval = sock_map_fd(sock);
if (retval < 0)
goto out_release;
out:
/* It may be already another descriptor 8) Not kernel problem. */
return retval;
out_release:
sock_release(sock);
return retval;
}
在分析这段代码之间,首先来看,创建一个 Socket,对内核而言,究竟意味着什么?究竟需要内核干什么事?
当用户空间要创建一个 socke 接口时,会调用 API 函数:
int socket(int domain, int type, int protocol);
函数,其三个参数分别表示协议族、协议类型(面向连接或无连接)以及协议。
对于用户态而言,一个 Scoket,就是一个特殊的,已经打开的文件。为了对 socket抽像出文件的概念,内核中为 socket 定义了一个专门的文件系统类型 sockfs:
static struct vfsmount *sock_mnt;
static struct file_system_type sock_fs_type = {
.name = "sockfs",
.get_sb = sockfs_get_sb,
.kill_sb = kill_anon_super,
};
在模块初始化的时候,安装该文件系统:
void __init sock_init(void)
{
……
register_filesystem(&sock_fs_type);
sock_mnt = kern_mount(&sock_fs_type);
}
有了文件系统后,对内核而言,创建一个 socket, 就是在 sockfs 文件系统中创建一个文件节点(inode),并建立起为了实现 socket 功能所 需的一整套数据结构,包括 struct inode 和 struct socket 结构。 struct socket 结构在内核中,就代表了一个"Socket",当一个 struct socket 数据结构被分配空间后,再将其与一个已打开的文件“建立映射关系”。这样,用户态就可以用抽像的文件的概念来操作socket了——当然,由 于网络的特殊性,至少就目前而言,这种抽像,并不如其它模块的抽像那么完美。
文件系统 struct vfsmount 中有一个成员指针 mnt_sb 指向该文件系统的超级块,而超级块结构 struct super_lock 有一个重要的成员 s_op 指向了超级块的操作函数表,其中有函数指针 alloc_inode()即为在给定的超级块下创建并初始化一 个新的索引节点对像。也就是调用:
sock_mnt->mnt_sb->s_op->alloc_inode(sock_mnt->mnt_sb);
当然,连同相关的处理细节一起,这一操作被层层封装至一个上层函数 new_inode()。
那如何分配一个 struct socket 结构呢?如前所述,一个 socket 总是与一个inode 密切相关的。当然,在 inode 中,设置一个 socket 成员,是完全可行的,但是 这貌似浪费了空间——毕竟,更多的文件系统没有 socket 这个东东。所以,内核引入了另一个 socket_alloc 结构:
struct socket_alloc {
struct socket socket;
struct inode vfs_inode;
};
显而易见,该结构实现了 inode 和 socket 的封装。已经一个 inode,可以通过宏 SOCKET_I 来获取与之对应的 socket:
sock = SOCKET_I(inode);
static inline struct socket *SOCKET_I(struct inode *inode)
{
return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
}
但是,这样做,也同时意味着,在分配一个 inode 后,必须再分配一个 socket_alloc结构,并实现对应的封装。否则,container_of 又能到哪儿去找到 socket 呢?现在来简要地看一个这个流程——这是文件系统安装中的一个重要步骤:
struct vfsmount *kern_mount(struct file_system_type *type)
{
return do_kern_mount(type->name, 0, type->name, NULL);
}
struct vfsmount *
do_kern_mount(const char *fstype, int flags, const char *name, void *data)
{
struct file_system_type *type = get_fs_type(fstype);
struct super_block *sb = ERR_PTR(-ENOMEM);
……
sb = type->get_sb(type, flags, name, data);
……
mnt->mnt_sb = sb;
……
}
do_kern_mount 函数中,先根据注册的文件系统类型,调用 get_fs_type 获取之,也就是我们之前注册的 sock_fs_type,然后调用它的 get_sb 成员函数指针,获取相应的超级块 sb。最后,调置文件系统的超级块成员指针,使之指向对应的值。 这里 get_sb函数指针,指向之前初始化的 sockfs_get_sb()函数。
static struct super_block *sockfs_get_sb(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data)
{
return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC);
}
注意其第三个参数 sockfs_ops,它封装了 sockfs 的功能函数表:
static struct super_operations sockfs_ops = {
.alloc_inode = sock_alloc_inode,
.destroy_inode =sock_destroy_inode,
.statfs = simple_statfs,
};
struct super_block *
get_sb_pseudo(struct file_system_type *fs_type, char *name,
struct super_operations *ops, unsigned long magic)
{
struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
……
s->s_op = ops ? ops : &default_ops;
}
这里就是先获取/分配一个超级块,然后初始化超级块的各成员,包括 s_op,我们前面提到过它,它封装了对应的功能函数表。这里 s_op 自然就指向了 sockfs_ops。那前面提到的 new_inode()函数分配 inode 时调用的:
sock_mnt->mnt_sb->s_op->alloc_inode(sock_mnt->mnt_sb);
这个 alloc_inode 函数指针也就是 sockfs_ops的 sock_alloc_inode()函数——转了一大圈,终于指到它了。 来看看 sock_alloc_inode 是如何分配一个 inode 节点的:
static struct inode *sock_alloc_inode(struct super_block *sb)
{
struct socket_alloc *ei;
ei = (struct socket_alloc *)kmem_cache_alloc(sock_inode_cachep, SLAB_KERNEL);
if (!ei)
return NULL;
init_waitqueue_head(&ei->socket.wait);
ei->socket.fasync_list = NULL;
ei->socket.state = SS_UNCONNECTED;
ei->socket.flags = 0;
ei->socket.ops = NULL;
ei->socket.sk = NULL;
ei->socket.file = NULL;
ei->socket.flags = 0;
return &ei->vfs_inode;
}
函数先分配了一个用于封装 socket 和 inode 的 ei,然后在高速缓存中为之申请了一块空间。这样,inode 和 socket 就同时都被分配了。接下来初始化 socket 的各个成员,这些成员,在后面都会一一提到。
/*
* struct socket - general BSD socket
* @state: socket state (%SS_CONNECTED, etc)
* @flags: socket flags (%SOCK_ASYNC_NOSPACE, etc)
* @ops: protocol specific socket operations
* @fasync_list: Asynchronous wake up list
* @file: File back pointer for gc
* @sk: internal networking protocol agnostic socket representation
* @wait: wait queue for several uses
* @type: socket type (%SOCK_STREAM, etc)
*/
struct socket {
socket_state state;
unsigned long flags; struct proto_ops *ops;
struct fasync_struct *fasync_list;
struct file *file;
struct sock *sk;
wait_queue_head_t wait;
short type;
};
OK,至目前为止,分配 inode、socket 以及两者如何关联,都已一一分析了。 最后一个关键问题,就是如何把 socket 与一个已打开的文件,建立映射关系。
在内核中,用 struct file结构描述一个已经打开的文件,指向该结构的指针内核中通常用 file或 filp来描述。我们知道,内核中,可以通过全局项 current 来获得当 前进程,它是一个 struct task_struct类型的指针。tastk_struct 有一个成员:
struct files_struct *files;
指向一个已打开的文件。当然,由于一个进程可能打开多个文件,所以,struct files_struct 结构有 struct file * fd_array[NR_OPEN_DEFAULT];
成员,这是个数组,以文件描述符为下标,即 current->files->fd[fd],可以找到与当前进程指定文件描述符的文件。
有了这些基础,如果要把一个 socket 与一个已打开的文件建立映射,首先要做的就是为 socket分配一个struct file,并申请分配一个相应的文件描述符fd。因为socket并不支持open方法(前面说socket的文件界面的抽像并不完美,这应该是一个佐证 吧?),所以不能期望用户界面通过调用 open() API来分配一个 struct file,而是通过调用get_empty_filp 来获取:
struct file *file = get_empty_filp();
同样地:
int fd;
fd = get_unused_fd();
获取一个空间的文件描述符
然后,让 current 的 files指针的 fd 数组的 fd 索引项指向该 file:
void fastcall fd_install(unsigned int fd, struct file * file)
{
struct files_struct *files = current->files;
spin_lock(&files->file_lock);
if (unlikely(files->fd[fd] != NULL))
BUG();
files->fd[fd] = file;
spin_unlock(&files->file_lock);
}
OK,做到这一步,有了一个文件描述符 fd 和一个打开的文件 file,它们与当前进程相连,但是好像与创建的socket并无任何瓜葛。要做的映射还是没 有进展。 struct file或文件描述述fd或current都没有任何能够与 inode或者是 socket 相关的东东。这需要一个中间的桥梁,目录项:struct dentry结构。 因为一个文件都有与其对应的目录项:
struct file {
struct list_head f_list;
struct dentry *f_dentry;
……
而一个目录项:
struct dentry {
……
struct inode *d_inode; /* Where the name belongs to - NULL is
* negative */
d_inode 成员指向了与之对应的 inode节点……
而之前已经创建了一个 inode 节点和与之对应的 socket。 所以,现在要做的,就是: “先为当前文件分配一个对应的目录项,再将已创建的 inode节点安装至该目录项” 这样,一个完成的映射关系: 进程、文件描述符、打开文件、目录项、inode节点、socket就完整地串起来了。
现在可以来看套接字的创建过程了:
asmlinkage long sys_socket(int family, int type, int protocol)
{
int retval;
struct socket *sock;
retval = sock_create(family, type, protocol, &sock);
if (retval < 0)
goto out;
retval = sock_map_fd(sock);
if (retval < 0)
goto out_release;
out:
/* It may be already another descriptor 8) Not kernel problem. */
return retval;
out_release: sock_release(sock);
return retval;
}
int sock_create(int family, int type, int protocol, struct socket **res)
{
return __sock_create(family, type, protocol, res, 0);
}