数据结构【线性表(二)链表】项目之多项式求和

/*
  *数据结构【线性表(二)链表】项目之多项式求和
  *Copyright (c) 2015 烟台大学计算机与控制工程学院
  *All right reserved.
  *文件名称:list.cpp
  *标题:数据结构【线性表(二)链表】项目之多项式求和
  *分类:多项式求和
  *writer:罗海员
  *date:2015年10月05日
  *版本:V1.0.1
  *操作系统:windows8.1
  *运行环境:codeblocks
  *问题描述:用单链表存储一元多项式,并实现两个多项式的加法。
            提示:
            1.存储多项式的数据结构
            多项式的通式是p n (x)=a n x n +a n?1 x n?1 +...+a 1 x+a 0 。
     n次多项式共有n+1项。直观地,可以定义一个数组来存储这n+1个系数。
        以多项式p(x)=?3.4x 10 ?9.6x 8 +7.2x 2 +x 为例,存储这个多项式的数组如下图:


   * 可以看出,这种方案适合对某些多项式的处理。但是,在处理一些次数高但项数少的多项式时,
     存在浪费空间的现象,会有很多闲置的0。可以使用如下定义的单链表结构存储多项式:
     链表中的每一个结点是多项式中的一项,结点的数据域包括指数和系数两部分,由指针域连接起多项式中的各项


   2.多项式加法在链表存储结构下的实现
            链表存储结构下,多项式加法的实现 在如上定义的单链表存储结构基础上,讨论实现多项式加法的算法。
            两个多项式相加,其规则是对具有相同指数的项,令其系数相加。
              设两个待相加的多项式的链表的头指针分别为head1(第一个多项式)和head2(第二个多项式),
     两者的和保存到链表head1中。只需要先将head1和head2链表的首结点作为当前结点(分别用p1和p2指向)开始检测,
     在遍历链表的过程中,分情况作如下处理:
           (1)若两个多项式中当前结点的指数值相同,则它们的系数相加,结果保存到p1结点,并将p2结点删除。
                  如果相加后的系数不为0,p1指向第一个多项式的下一个结点,准备随后的工作,否则,不保存系数为0的项,将当前p1结点删除。
           (2)当两个多项式中对应结点的指数值不相等时,若p1指向的结点的指数大,则p1简单地指向下一结点即可;
                  而p2指向的结点大时,需要将p2结点插入到p1前,然后p2再重新指回到第二个多项式中的下一结点,继续进行处理。
           (3)检测过程直到其中的任一个链表结束。若p1不为空,第一个多项式中的剩余项已经在链表中,不作处理
                  ,如果p2不为空,只需要将p2链接到相加后的第一个多项式末尾。
                上面的讨论假设多项式链表中,已经按指数由大到小排序,在加法之前,采取多种手段保证这一前提成立。
  *提示:
        1.定义单链表存储结构,用头插法和尾插法建立单链表,并显示建立好以后的结果。
        2.复杂度的要求,设计算法并用专门的函数实现算法;
        3.理论与实践相结合
*/

<span style="font-size:12px;color:#000000;">#include <stdio.h>
#include <malloc.h>
#define MAX 20          //多项式最多项数
typedef struct      //定义存放多项式的数组类型
{
    double coef;        //系数
    int exp;            //指数
} PolyArray;

typedef struct pnode    //定义单链表结点类型,保存多项式中的一项,链表构成多项式
{
    double coef;        //系数
    int exp;            //指数
    struct pnode *next;
} PolyNode;

void DispPoly(PolyNode *L)  //输出多项式
{
    bool first=true;        //first为true表示是第一项
    PolyNode *p=L->next;
    while (p!=NULL)
    {
        if (first)
            first=false;
        else if (p->coef>0)
            printf("+");
        if (p->exp==0)
            printf("%g",p->coef);
        else if (p->exp==1)
            printf("%gx",p->coef);
        else
            printf("%gx^%d",p->coef,p->exp);
        p=p->next;
    }
    printf("\n");
}

void DestroyList(PolyNode *&L)  //销毁单链表
{
    PolyNode *p=L,*q=p->next;
    while (q!=NULL)
    {
        free(p);
        p=q;
        q=p->next;
    }
    free(p);
}

void CreateListR(PolyNode *&L, PolyArray a[], int n) //尾插法建表
{
    PolyNode *s,*r;
    int i;
    L=(PolyNode *)malloc(sizeof(PolyNode)); //创建头结点
    L->next=NULL;
    r=L;                        //r始终指向终端结点,开始时指向头结点
    for (i=0; i<n; i++)
    {
        s=(PolyNode *)malloc(sizeof(PolyNode));//创建新结点
        s->coef=a[i].coef;
        s->exp=a[i].exp;
        r->next=s;              //将*s插入*r之后
        r=s;
    }
    r->next=NULL;               //终端结点next域置为NULL
}

void Sort(PolyNode *&head)      //按exp域递减排序
{
    PolyNode *p=head->next,*q,*r;
    if (p!=NULL)                //若原单链表中有一个或以上的数据结点
    {
        r=p->next;              //r保存*p结点后继结点的指针
        p->next=NULL;           //构造只含一个数据结点的有序表
        p=r;
        while (p!=NULL)
        {
            r=p->next;          //r保存*p结点后继结点的指针
            q=head;
            while (q->next!=NULL && q->next->exp>p->exp)
                q=q->next;      //在有序表中找插入*p的前驱结点*q
            p->next=q->next;    //将*p插入到*q之后
            q->next=p;
            p=r;
        }
    }
}

void Add(PolyNode *ha,PolyNode *hb,PolyNode *&hc)  //求两有序集合的并,完成加法
{
    PolyNode *pa=ha->next,*pb=hb->next,*s,*tc;
    double c;
    hc=(PolyNode *)malloc(sizeof(PolyNode));        //创建头结点
    tc=hc;
    while (pa!=NULL && pb!=NULL)
    {
        if (pa->exp>pb->exp)
        {
            s=(PolyNode *)malloc(sizeof(PolyNode)); //复制结点
            s->exp=pa->exp;
            s->coef=pa->coef;
            tc->next=s;
            tc=s;
            pa=pa->next;
        }
        else if (pa->exp<pb->exp)
        {
            s=(PolyNode *)malloc(sizeof(PolyNode)); //复制结点
            s->exp=pb->exp;
            s->coef=pb->coef;
            tc->next=s;
            tc=s;
            pb=pb->next;
        }
        else                //pa->exp=pb->exp
        {
            c=pa->coef+pb->coef;
            if (c!=0)       //系数之和不为0时创建新结点
            {
                s=(PolyNode *)malloc(sizeof(PolyNode)); //复制结点
                s->exp=pa->exp;
                s->coef=c;
                tc->next=s;
                tc=s;
            }
            pa=pa->next;
            pb=pb->next;
        }
    }
    if (pb!=NULL) pa=pb;    //复制余下的结点
    while (pa!=NULL)
    {
        s=(PolyNode *)malloc(sizeof(PolyNode)); //复制结点
        s->exp=pa->exp;
        s->coef=pa->coef;
        tc->next=s;
        tc=s;
        pa=pa->next;
    }
    tc->next=NULL;
}

int main()
{
    PolyNode *ha,*hb,*hc;
    PolyArray a[]= {{1.2,0},{2.5,1},{3.2,3},{-2.5,5}};
    PolyArray b[]= {{-1.2,0},{2.5,1},{3.2,3},{2.5,5},{5.4,10}};
    CreateListR(ha,a,4);
    CreateListR(hb,b,5);
    printf("原多项式A  :");
    DispPoly(ha);
    printf("原多项式B  :");
    DispPoly(hb);
    Sort(ha);
    Sort(hb);
    printf("有序多项式A:");
    DispPoly(ha);
    printf("有序多项式B:");
    DispPoly(hb);
    Add(ha,hb,hc);
    printf("多项式相加 :");
    DispPoly(hc);
    DestroyList(ha);
    DestroyList(hb);
    DestroyList(hc);
    return 0;
}</span>


--运行结果如下 :

数据结构【线性表(二)链表】项目之多项式求和_第1张图片

你可能感兴趣的:(数据结构,数据结构--线性表)