哈夫曼树

理论文字来源于网络


给定n个权值作为n个叶子结点,构造一棵二叉树,若带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman tree)。

1、路径和路径长度
在一棵树中,从一个结点往下可以达到的孩子或子孙结点之间的通路,称为路径。通路中分支的数目称为路径长度。若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1。
2、结点的权及带权路径长度
若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权。结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积。
3、树的带权路径长度
树的带权路径长度规定为所有叶子结点的带权路径长度之和,记为WPL

哈夫曼树的构造

  哈夫曼树的构造

假设有n个权值,则构造出的哈夫曼树有n个叶子结点。 n个权值分别设为 w1、w2、…、wn,则哈夫曼树的构造规则为:
(1) 将w1、w2、…,wn看成是有n 棵树的森林(每棵树仅有一个结点);
(2) 在森林中选出两个根结点的权值最小的树合并,作为一棵新树的左、右子树,且新树的根结点权值为其左、右子树根结点权值之和;
(3)从森林中删除选取的两棵树,并将新树加入森林;
(4)重复(2)、(3)步,直到森林中只剩一棵树为止,该树即为所求得的哈夫曼树
下面是哈夫曼树的基本操作

using namespace std;

const int MaxValue = 10000;	//初始设定的权值最大值
const int MaxBit = 4;		//初始设定的最大编码位数
const int MaxN = 10;		//初始设定的最大结点个数


struct HaffNode                      //哈夫曼树的结点结构
{
	int weight;			//权值
	int flag;				//标记
	int parent;			//双亲结点下标
	int leftChild;			//左孩子下标
	int rightChild;			//右孩子下标
};
struct Code                           //存放哈夫曼编码的数据元素结构
{
	int bit[MaxN];			//数组
	int start;			//编码的起始下标
	int weight;			//字符的权值
};


void Haffman(int weight[], int n, HaffNode haffTree[])
//建立叶结点个数为n权值为weight的哈夫曼树haffTree
{
	int j, m1, m2, x1, x2;
//哈夫曼树haffTree初始化。n个叶结点的哈夫曼树共有2n-1个结点
	for(int i = 0; i < 2 * n - 1 ; i++)	{
		if(i < n) haffTree[i].weight = weight[i];
		else      haffTree[i].weight = 0;
		haffTree[i].parent = 0;
		haffTree[i].flag   = 0;
		haffTree[i].leftChild = -1;
		haffTree[i].rightChild = -1;
	}
	//构造哈夫曼树haffTree的n-1个非叶结点
	for(i = 0;i < n-1;i++)	{
		m1 = m2 = MaxValue;
		x1 = x2 = 0;
		for(j = 0; j < n+i;j++)	{
			if (haffTree[j].weight < m1 && haffTree[j].flag == 0){
					m2 = m1;
					x2 = x1;
					m1 = haffTree[j].weight;
					x1 = j;
			}
			else if(haffTree[j].weight < m2 && haffTree[j].flag == 0){
				m2 = haffTree[j].weight;
				x2 = j;
			}
		}

		//将找出的两棵权值最小的子树合并为一棵子树
		haffTree[x1].parent  = n+i;   
		haffTree[x2].parent  = n+i;
		haffTree[x1].flag    = 1;
		haffTree[x2].flag    = 1;
		haffTree[n+i].weight = haffTree[x1].weight+haffTree[x2].weight;
		haffTree[n+i].leftChild = x1;
		haffTree[n+i].rightChild = x2;
	}
}

void HaffmanCode(HaffNode haffTree[], int n, Code haffCode[])
//由n个结点的哈夫曼树haffTree构造哈夫曼编码haffCode
{
	Code *cd = new Code;
	int child, parent;

	//求n个叶结点的哈夫曼编码
	for(int i = 0; i < n; i++)	{
		cd->start = n-1;		               //不等长编码的最后一位为n-1
		cd->weight = haffTree[i].weight;	//取得编码对应权值的字符
		child = i;
		parent = haffTree[child].parent;

		//由叶结点向上直到根结点
		while(parent != 0)
		{
		   if(haffTree[parent].leftChild == child)
			  cd->bit[cd->start] = 0; //左孩子结点编码0
		   else					
			  cd->bit[cd->start] = 1;//右孩子结点编码1
		   cd->start--;
		   child = parent;
		   parent = haffTree[child].parent;
		}

		//保存叶结点的编码和不等长编码的起始位
		for(int j = cd->start+1; j < n; j++) 
		   haffCode[i].bit[j] = cd->bit[j];
		haffCode[i].start  = cd->start;
		haffCode[i].weight = cd->weight;  //保存编码对应的权值
	}
}

void main(void){
	int i, j, n = 4;
	int weight[] = {1,3,5,7};
	HaffNode *myHaffTree = new HaffNode[2*n+1];
	Code *myHaffCode = new Code[n];
	if(n > MaxN)	{
		cout << "定义的n越界,修改MaxN! " << endl;
		exit(0);
	}
	Haffman(weight, n, myHaffTree);
	HaffmanCode(myHaffTree, n, myHaffCode);
//输出每个叶结点的哈夫曼编码
	for(i = 0; i < n; i++)	{
		cout << "Weight = " << myHaffCode[i].weight << "   Code = ";
		for(j = myHaffCode[i].start+1; j < n; j++)
			cout << myHaffCode[i].bit[j];
		cout << endl;
	}
}




你可能感兴趣的:(哈夫曼树)