package org.apache.hadoop.examples;
import java.io.IOException;
import java.util.StringTokenizer;
importorg.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
importorg.apache.hadoop.mapreduce.lib.input.FileInputFormat;
importorg.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
importorg.apache.hadoop.util.GenericOptionsParser;
public class WordCount {
/**
MapReduceBase类:实现了Mapper和Reducer接口的基类(其中的方法只是实现接口,而未作任何事情)
Mapper接口:
WritableComparable接口:实现WritableComparable的类可以相互比较。所有被用作key的类应该实现此接口。
Reporter 则可用于报告整个应用的运行进度,本例中未使用。
LongWritable, IntWritable, Text 均是 Hadoop 中实现的用于封装 Java 数据类型的类,这些类实现了WritableComparable接口,都能够被串行化从而便于在分布式环境中进行数据交换,你可以将它们分别视为long,int,String 的替代品。
**/
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
/**
Mapper接口中的map方法,
Void map(K1key, V1 value, OutputCollector<K2,V2> output, Reporter reporter)
映射一个单个的输入k/v对到一个中间的k/v对
输出对不需要和输入对有相同的类型,输入对可以对应不同数量的输出对
OutputCollector接口:收集Mapper和Reducer输出的<k,v>对
OutputColletctor接口的collect(k,v)方法,增加一个(k/v)对到output
**/
public void map(Object key, Text value, Context context
) throws IOException,InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException,InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
publicstatic void main(String[] args) throws Exception
{
/**
* JobConf:map/reduce的job配置类,向hadoop框架描述map-reduce执行的工作
* 构造方法:JobConf()、JobConf(ClassexampleClass)、JobConf(Configuration conf)等
*/
JobConf conf = new JobConf(WordCount.class);
conf.setJobName("wordcount"); //设置一个用户定义的job名称
conf.setOutputKeyClass(Text.class); //为job的输出数据设置Key类
conf.setOutputValueClass(IntWritable.class);//为job输出设置value类
conf.setMapperClass(Map.class); //为job设置Mapper类
conf.setCombinerClass(Reduce.class); //为job设置Combiner类
conf.setReducerClass(Reduce.class); //为job设置Reduce类
conf.setInputFormat(TextInputFormat.class);//为map-reduce任务设置InputFormat实现类
conf.setOutputFormat(TextOutputFormat.class);//为map-reduce任务设置OutputFormat实现类
/**
* InputFormat描述map-reduce中对job的输入定义
* setInputPaths():为map-reducejob设置路径数组作为输入列表
* setInputPath():为map-reducejob设置路径数组作为输出列表
*/
FileInputFormat.setInputPaths(conf, newPath(args[0]));
FileOutputFormat.setOutputPath(conf, newPath(args[1]));
JobClient.runJob(conf); //运行一个job
}
}