hadoop wordcount源代码分析

package org.apache.hadoop.examples;

 

import java.io.IOException;

import java.util.StringTokenizer;

 

importorg.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

importorg.apache.hadoop.mapreduce.lib.input.FileInputFormat;

importorg.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

importorg.apache.hadoop.util.GenericOptionsParser;

 

public class WordCount {

/**

MapReduceBase类:实现了Mapper和Reducer接口的基类(其中的方法只是实现接口,而未作任何事情)

Mapper接口:

WritableComparable接口:实现WritableComparable的类可以相互比较。所有被用作key的类应该实现此接口。

Reporter 则可用于报告整个应用的运行进度,本例中未使用。

LongWritable, IntWritable, Text 均是 Hadoop 中实现的用于封装 Java 数据类型的类,这些类实现了WritableComparable接口,都能够被串行化从而便于在分布式环境中进行数据交换,你可以将它们分别视为long,int,String 的替代品。

**/

 public static class TokenizerMapper

      extends Mapper<Object, Text, Text, IntWritable>{

   

   private final static IntWritable one = new IntWritable(1);

   private Text word = new Text();

/**

Mapper接口中的map方法,

Void map(K1key, V1 value, OutputCollector<K2,V2> output, Reporter reporter)

映射一个单个的输入k/v对到一个中间的k/v对

输出对不需要和输入对有相同的类型,输入对可以对应不同数量的输出对

OutputCollector接口:收集Mapper和Reducer输出的<k,v>对

OutputColletctor接口的collect(k,v)方法,增加一个(k/v)对到output

**/ 

   public void map(Object key, Text value, Context context

                    ) throws IOException,InterruptedException {

     StringTokenizer itr = new StringTokenizer(value.toString());

     while (itr.hasMoreTokens()) {

        word.set(itr.nextToken());

       context.write(word, one);

     }

    }

  }

 

 public static class IntSumReducer

      extends Reducer<Text,IntWritable,Text,IntWritable> {

   private IntWritable result = new IntWritable();

 

   public void reduce(Text key, Iterable<IntWritable> values,

                       Context context

                       ) throws IOException,InterruptedException {

     int sum = 0;

     for (IntWritable val : values) {

       sum += val.get();

      }

     result.set(sum);

     context.write(key, result);

    }

  }

 

  publicstatic void main(String[] args) throws Exception

{

/**

* JobConf:map/reduce的job配置类,向hadoop框架描述map-reduce执行的工作

* 构造方法:JobConf()、JobConf(ClassexampleClass)、JobConf(Configuration conf)等

*/

JobConf conf = new JobConf(WordCount.class);

conf.setJobName("wordcount"); //设置一个用户定义的job名称

 

conf.setOutputKeyClass(Text.class); //为job的输出数据设置Key类

conf.setOutputValueClass(IntWritable.class);//为job输出设置value类

 

conf.setMapperClass(Map.class); //为job设置Mapper类

conf.setCombinerClass(Reduce.class); //为job设置Combiner类

conf.setReducerClass(Reduce.class); //为job设置Reduce类

 

conf.setInputFormat(TextInputFormat.class);//为map-reduce任务设置InputFormat实现类

conf.setOutputFormat(TextOutputFormat.class);//为map-reduce任务设置OutputFormat实现类

 

/**

* InputFormat描述map-reduce中对job的输入定义

* setInputPaths():为map-reducejob设置路径数组作为输入列表

* setInputPath():为map-reducejob设置路径数组作为输出列表

*/

FileInputFormat.setInputPaths(conf, newPath(args[0]));

FileOutputFormat.setOutputPath(conf, newPath(args[1]));

 

JobClient.runJob(conf); //运行一个job

}

}

 

 

你可能感兴趣的:(hadoop,exception,String,Class,代码分析,output)