word2vec源码解析之word2phrase.c
最近研究了一下google的开源项目word2vector,http://code.google.com/p/word2vec/。
其实这玩意算是神经网络在文本挖掘的一项成功应用。
word2vec.c是核心代码,不过感觉先读word2phrase.c代码,再读前者比较好。
一来word2phrase.c算法简单点,容易理解,
二来word2phrase.c里面有些函数在word2vec.c会用到,读完word2phrase.c有助于读word2vec.c。
说白了,word2phrase就是将词语拼成短语。具体算法在论文《Distributed Representations of Words and Phrases and their Compositionality》讲到。
我也写过这篇论文的学习笔记http://blog.csdn.net/lingerlanlan/article/details/38048335
下面是源码注释,建议从main函数开始读。
// Copyright 2013 Google Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include <stdio.h> #include <stdlib.h> #include <string.h> #include <math.h> #include <pthread.h> #define MAX_STRING 60 const int vocab_hash_size = 500000000; // Maximum 500M entries in the vocabulary typedef float real; // Precision of float numbers struct vocab_word { long long cn;//词频 char *word;//词语 }; char train_file[MAX_STRING], output_file[MAX_STRING]; struct vocab_word *vocab; int debug_mode = 2, min_count = 5, *vocab_hash, min_reduce = 1; long long vocab_max_size = 10000, vocab_size = 0; long long train_words = 0; real threshold = 100; unsigned long long next_random = 1; // Reads a single word from a file, assuming space + tab + EOL to be word boundaries //从文件流中读取一个词语 void ReadWord(char *word, FILE *fin) { int a = 0, ch; while (!feof(fin)) { ch = fgetc(fin); if (ch == 13) continue; if ((ch == ' ') || (ch == '\t') || (ch == '\n')) { if (a > 0) { if (ch == '\n') ungetc(ch, fin); break; } if (ch == '\n') { strcpy(word, (char *)"</s>"); return; } else continue; } word[a] = ch; a++; if (a >= MAX_STRING - 1) a--; // Truncate too long words } word[a] = 0; } // Returns hash value of a word //算出一个词语的hash值 int GetWordHash(char *word) { unsigned long long a, hash = 1; for (a = 0; a < strlen(word); a++) hash = hash * 257 + word[a]; hash = hash % vocab_hash_size; return hash; } // Returns position of a word in the vocabulary; if the word is not found, returns -1 //返回一个词在词汇表的位置 int SearchVocab(char *word) { unsigned int hash = GetWordHash(word); while (1) { if (vocab_hash[hash] == -1) return -1; if (!strcmp(word, vocab[vocab_hash[hash]].word)) return vocab_hash[hash]; hash = (hash + 1) % vocab_hash_size; } return -1; } // Reads a word and returns its index in the vocabulary //从文件流中读取一个词,并返回在词汇表中的位置 int ReadWordIndex(FILE *fin) { char word[MAX_STRING]; ReadWord(word, fin); if (feof(fin)) return -1; return SearchVocab(word); } // Adds a word to the vocabulary //添加一个新词到词汇表中 int AddWordToVocab(char *word) { unsigned int hash, length = strlen(word) + 1; if (length > MAX_STRING) length = MAX_STRING; vocab[vocab_size].word = (char *)calloc(length, sizeof(char)); strcpy(vocab[vocab_size].word, word); vocab[vocab_size].cn = 0; vocab_size++; // Reallocate memory if needed if (vocab_size + 2 >= vocab_max_size) { vocab_max_size += 10000; vocab=(struct vocab_word *)realloc(vocab, vocab_max_size * sizeof(struct vocab_word)); } hash = GetWordHash(word); while (vocab_hash[hash] != -1) //知道hash值没有冲突 hash = (hash + 1) % vocab_hash_size; vocab_hash[hash]=vocab_size - 1;//hash表的作用,由一个词的hash值映射到该词在词汇表中的位置 return vocab_size - 1; } // Used later for sorting by word counts int VocabCompare(const void *a, const void *b) { return ((struct vocab_word *)b)->cn - ((struct vocab_word *)a)->cn; } // Sorts the vocabulary by frequency using word counts //根据词频对词汇表排序 void SortVocab() { int a; unsigned int hash; // Sort the vocabulary and keep </s> at the first position qsort(&vocab[1], vocab_size - 1, sizeof(struct vocab_word), VocabCompare); for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1; for (a = 0; a < vocab_size; a++) { // Words occuring less than min_count times will be discarded from the vocab //词频太低的词语,丢弃 if (vocab[a].cn < min_count) { vocab_size--; free(vocab[vocab_size].word); } else { // Hash will be re-computed, as after the sorting it is not actual //对每个值重新计算hash hash = GetWordHash(vocab[a].word); while (vocab_hash[hash] != -1) hash = (hash + 1) % vocab_hash_size; vocab_hash[hash] = a; } } vocab = (struct vocab_word *)realloc(vocab, vocab_size * sizeof(struct vocab_word)); } // Reduces the vocabulary by removing infrequent tokens //如果词汇表太大,则丢弃低频词 void ReduceVocab() { int a, b = 0; unsigned int hash; for (a = 0; a < vocab_size; a++) if (vocab[a].cn > min_reduce) { vocab[b].cn = vocab[a].cn; vocab[b].word = vocab[a].word; b++; } else free(vocab[a].word); vocab_size = b; for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1; for (a = 0; a < vocab_size; a++) { // Hash will be re-computed, as it is not actual hash = GetWordHash(vocab[a].word); while (vocab_hash[hash] != -1) hash = (hash + 1) % vocab_hash_size; vocab_hash[hash] = a; } fflush(stdout); min_reduce++; } //读取训练文件,统计词频,生成词汇表,相邻的两个词语会生成“假短语”,添加到词汇表中 void LearnVocabFromTrainFile() { char word[MAX_STRING], last_word[MAX_STRING], bigram_word[MAX_STRING * 2]; FILE *fin; long long a, i, start = 1; for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1; fin = fopen(train_file, "rb"); if (fin == NULL) { printf("ERROR: training data file not found!\n"); exit(1); } vocab_size = 0; AddWordToVocab((char *)"</s>"); while (1) { ReadWord(word, fin);//读入一个词语 if (feof(fin)) break; if (!strcmp(word, "</s>")) { start = 1; continue; } else start = 0; train_words++; if ((debug_mode > 1) && (train_words % 100000 == 0)) { printf("Words processed: %lldK Vocab size: %lldK %c", train_words / 1000, vocab_size / 1000, 13); fflush(stdout); } i = SearchVocab(word);//查找该词在词汇表的位置 if (i == -1) //第一次遇到,则添加到词汇表中 { a = AddWordToVocab(word); vocab[a].cn = 1; } else vocab[i].cn++;//增加词汇 if (start) continue; sprintf(bigram_word, "%s_%s", last_word, word);//两个词频拼在一起,生成“假短语” bigram_word[MAX_STRING - 1] = 0; strcpy(last_word, word); i = SearchVocab(bigram_word);//查找“短语”是否在词汇表中存在 if (i == -1) //不存在,则添加进去 { a = AddWordToVocab(bigram_word); vocab[a].cn = 1; } else vocab[i].cn++;//存在则增加词频 if (vocab_size > vocab_hash_size * 0.7) ReduceVocab();//如果词汇表太大了,则缩减 } SortVocab();//根据词频排序 if (debug_mode > 0) { printf("\nVocab size (unigrams + bigrams): %lld\n", vocab_size); printf("Words in train file: %lld\n", train_words); } fclose(fin); } void TrainModel() { long long pa = 0, pb = 0, pab = 0, oov, i, li = -1, cn = 0; char word[MAX_STRING], last_word[MAX_STRING], bigram_word[MAX_STRING * 2]; real score; FILE *fo, *fin; printf("Starting training using file %s\n", train_file); LearnVocabFromTrainFile();//遍历训练文件,统计词频,生成词汇表 fin = fopen(train_file, "rb"); fo = fopen(output_file, "wb"); word[0] = 0; while (1) { strcpy(last_word, word);//上一个词语 ReadWord(word, fin);//从文件流读进新的词语 if (feof(fin)) break; if (!strcmp(word, "</s>")) { fprintf(fo, "\n"); continue; } cn++; if ((debug_mode > 1) && (cn % 100000 == 0)) { printf("Words written: %lldK%c", cn / 1000, 13); fflush(stdout); } oov = 0; i = SearchVocab(word);//返回该词在词汇表的位置,-1表示 if (i == -1) oov = 1; //如果第一次遇到该词 else pb = vocab[i].cn;//该词的词频 if (li == -1) oov = 1;//如果上一个词是第一次遇到 li = i; sprintf(bigram_word, "%s_%s", last_word, word);//两个词语拼在一起,形成“短语” bigram_word[MAX_STRING - 1] = 0; i = SearchVocab(bigram_word);//“短语”是否在词汇表中存在 if (i == -1) //不存在 oov = 1; else pab = vocab[i].cn;//存在,则找出该“短语”的词频 if (pa < min_count) oov = 1; if (pb < min_count) oov = 1; if (oov) score = 0; //oov的值为1,则认为这两个词语不可能在一起,不能形成短语 else score = (pab - min_count) / (real)pa / (real)pb * (real)train_words;//根据公式算出两个词语“在一起”的可能性 if (score > threshold) //如果分数大于某个阈值,则认为他们能“在一起”,能形成短语 { fprintf(fo, "_%s", word);//往文件输出,连在上一个词,注意这两个词用“_”连在一起,表示他们是短语。 pb = 0; } else fprintf(fo, " %s", word);//往文件输出,用空格隔开,表示这个两个词语不是短语。 pa = pb; } fclose(fo); fclose(fin); } int ArgPos(char *str, int argc, char **argv) { int a; for (a = 1; a < argc; a++) if (!strcmp(str, argv[a])) { if (a == argc - 1) { printf("Argument missing for %s\n", str); exit(1); } return a; } return -1; } int main(int argc, char **argv) { int i; if (argc == 1) { printf("WORD2PHRASE tool v0.1a\n\n"); printf("Options:\n"); printf("Parameters for training:\n"); //训练文件,已分词的文件 printf("\t-train <file>\n"); printf("\t\tUse text data from <file> to train the model\n"); //输出文件,即短语文件 printf("\t-output <file>\n"); printf("\t\tUse <file> to save the resulting word vectors / word clusters / phrases\n"); //最小词频,如果某个词语小于这个阈值,则丢弃;默认为5。 printf("\t-min-count <int>\n"); printf("\t\tThis will discard words that appear less than <int> times; default is 5\n"); //阈值,两个词语通过一个函数计算得到一个分数,再跟这个阈值比较,衡量是否能形成短语;默认是100。 printf("\t-threshold <float>\n"); printf("\t\t The <float> value represents threshold for forming the phrases (higher means less phrases); default 100\n"); //是否为debug模式 printf("\t-debug <int>\n"); printf("\t\tSet the debug mode (default = 2 = more info during training)\n"); printf("\nExamples:\n"); printf("./word2phrase -train text.txt -output phrases.txt -threshold 100 -debug 2\n\n"); return 0; } if ((i = ArgPos((char *)"-train", argc, argv)) > 0) strcpy(train_file, argv[i + 1]); if ((i = ArgPos((char *)"-debug", argc, argv)) > 0) debug_mode = atoi(argv[i + 1]); if ((i = ArgPos((char *)"-output", argc, argv)) > 0) strcpy(output_file, argv[i + 1]); if ((i = ArgPos((char *)"-min-count", argc, argv)) > 0) min_count = atoi(argv[i + 1]); if ((i = ArgPos((char *)"-threshold", argc, argv)) > 0) threshold = atof(argv[i + 1]); vocab = (struct vocab_word *)calloc(vocab_max_size, sizeof(struct vocab_word));//词汇表申请空间 vocab_hash = (int *)calloc(vocab_hash_size, sizeof(int));//hash表申请空间 TrainModel(); return 0; }