二分最大转角,大于当前最大转角的就不松弛这条边了,跑SPFA看能不能到终点,由于只看判定性,所以一旦搜到终点就可以结束了。加了SLF优化,测试发现deque这样写效率还是挺高的……另外,松弛操作单独写一个update函数对于那种很麻烦的转移有奇效……
/* Author : Speedcell Update : 2013-10-08 Version : soppYcell 2.3 */ #include <algorithm> #include <iostream> #include <fstream> #include <sstream> #include <iomanip> #include <map> #include <set> #include <list> #include <stack> #include <queue> #include <deque> #include <vector> #include <string> #include <bitset> #include <memory> #include <complex> #include <numeric> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <math.h> #include <time.h> #include <ctype.h> #include <locale.h> using namespace std; #pragma pack(4) #ifndef __CONSTANT__ #define __CONSTANT__ typedef long long LONG; const double pi = acos(-1.0); const int inf = 0x7f7f7f7f; const LONG INF = 0x7f7f7f7f7f7f7f7fll; const int go[8][2] = {{0,1},{0,-1},{1,0},{-1,0},{1,1},{1,-1},{-1,1},{-1,-1}}; #endif // __CONSTANT__ #ifndef __IO__ #define __IO__ inline bool RD(int & a) {return scanf("%d",&a)!=EOF;} inline bool RD(char & a) {return scanf("%c",&a)!=EOF;} inline bool RD(char * a) {return scanf("%s", a)!=EOF;} inline bool RD(double & a) {return scanf("%lf",&a)!=EOF;} inline bool RD(LONG & a) {return scanf("%I64d",&a)!=EOF;} template<class T1> inline bool IN(T1 & a) {return RD(a);} template<class T1,class T2> inline bool IN(T1 & a,T2 & b) {return RD(a)&&RD(b);} template<class T1,class T2,class T3> inline bool IN(T1 & a,T2 & b,T3 & c) {return RD(a)&&RD(b)&&RD(c);} template<class T1,class T2,class T3,class T4> inline bool IN(T1 & a,T2 & b,T3 & c,T4 & d) {return RD(a)&&RD(b)&&RD(c)&&RD(d);} template<class T1,class T2,class T3,class T4,class T5> inline bool IN(T1 & a,T2 & b,T3 & c,T4 & d,T5 & e) {return RD(a)&&RD(b)&&RD(c)&&RD(d)&&RD(e);} template<class T1,class T2,class T3,class T4,class T5,class T6> inline bool IN(T1 & a,T2 & b,T3 & c,T4 & d,T5 & e,T6 & f) {return RD(a)&&RD(b)&&RD(c)&&RD(d)&&RD(e)&&RD(f);} template<class T1,class T2,class T3,class T4,class T5,class T6,class T7> inline bool IN(T1 & a,T2 & b,T3 & c,T4 & d,T5 & e,T6 & f,T7 & g) {return RD(a)&&RD(b)&&RD(c)&&RD(d)&&RD(e)&&RD(f)&&RD(g);} inline void PT(int a) {printf("%d",a);} inline void PT(char a) {printf("%c",a);} inline void PT(char * a) {printf("%s",a);} inline void PT(double a) {printf("%f",a);} inline void PT(LONG a) {printf("%I64d",a);} inline void PT(const char a[]) {printf("%s",a);} template<class T1> inline void OT(T1 a) {PT(a);} template<class T1,class T2> inline void OT(T1 a,T2 b) {PT(a),PT(' '),PT(b);} template<class T1,class T2,class T3> inline void OT(T1 a,T2 b,T3 c) {PT(a),PT(' '),PT(b),PT(' '),PT(c);} template<class T1,class T2,class T3,class T4> inline void OT(T1 a,T2 b,T3 c,T4 d) {PT(a),PT(' '),PT(b),PT(' '),PT(c),PT(' '),PT(d);} template<class T1,class T2,class T3,class T4,class T5> inline void OT(T1 a,T2 b,T3 c,T4 d,T5 e) {PT(a),PT(' '),PT(b),PT(' '),PT(c),PT(' '),PT(d),PT(' '),PT(e);} template<class T1,class T2,class T3,class T4,class T5,class T6> inline void OT(T1 a,T2 b,T3 c,T4 d,T5 e,T6 f) {PT(a),PT(' '),PT(b),PT(' '),PT(c),PT(' '),PT(d),PT(' '),PT(e),PT(' '),PT(f);} template<class T1,class T2,class T3,class T4,class T5,class T6,class T7> inline void OT(T1 a,T2 b,T3 c,T4 d,T5 e,T6 f,T7 g) {PT(a),PT(' '),PT(b),PT(' '),PT(c),PT(' '),PT(d),PT(' '),PT(e),PT(' '),PT(f),PT(' '),PT(g);} template<class T1> inline void OL(T1 a) {PT(a),PT('\n');} template<class T1,class T2> inline void OL(T1 a,T2 b) {PT(a),PT(' '),PT(b),PT('\n');} template<class T1,class T2,class T3> inline void OL(T1 a,T2 b,T3 c) {PT(a),PT(' '),PT(b),PT(' '),PT(c),PT('\n');} template<class T1,class T2,class T3,class T4> inline void OL(T1 a,T2 b,T3 c,T4 d) {PT(a),PT(' '),PT(b),PT(' '),PT(c),PT(' '),PT(d),PT('\n');} template<class T1,class T2,class T3,class T4,class T5> inline void OL(T1 a,T2 b,T3 c,T4 d,T5 e) {PT(a),PT(' '),PT(b),PT(' '),PT(c),PT(' '),PT(d),PT(' '),PT(e),PT('\n');} template<class T1,class T2,class T3,class T4,class T5,class T6> inline void OL(T1 a,T2 b,T3 c,T4 d,T5 e,T6 f) {PT(a),PT(' '),PT(b),PT(' '),PT(c),PT(' '),PT(d),PT(' '),PT(e),PT(' '),PT(f),PT('\n');} template<class T1,class T2,class T3,class T4,class T5,class T6,class T7> inline void OL(T1 a,T2 b,T3 c,T4 d,T5 e,T6 f,T7 g) {PT(a),PT(' '),PT(b),PT(' '),PT(c),PT(' '),PT(d),PT(' '),PT(e),PT(' '),PT(f),PT(' '),PT(g),PT('\n');} #endif // __IO__ #ifndef __MACRO__ #define __MACRO__ #define ML(times) int tcase; IN(tcase); FOR(times,1,tcase) #define FOR(i,a,b) for(int i=int(a),_##i=int(b);i<=_##i;i++) #define DWN(i,b,a) for(int i=int(b),_##i=int(a);_##i<=i;i--) #define ECH(i,u,pre,next) for(int i=int(pre[u]);i!=-1;i=int(next[i])) #define MEM(a,v) memset(a,v,sizeof(a)) #define CLR(a,v) FOR(_i##a,0,sizeof(a)/sizeof(a[0])-1) a[_i##a]=v #define LOOP(a,n) \ FOR(_i##a,0,(n)-1) \ OT(a[_i##a]),OT(_i##a!=__i##a?' ':'\n') #define LOOP2(a,n,m) \ FOR(_i##a,0,(n)-1) FOR(_j##a,0,(m)-1) \ OT(a[_i##a][_j##a]),OT(_j##a!=__j##a?' ':'\n') #define LOOPG(G,n,pre,next) \ FOR(_i##a,0,(n)-1) ECH(_j##a,_i##a,pre,next) \ OL(_i##a,G[_j##a].v,G[_j##a].w) #endif // __MACRO__ #ifndef __BIT__ #define __BIT__ template<class T> inline T lb(T i) {return i&-i;} template<class T> inline T lc(T i) {return i<<1;} template<class T> inline T rc(T i) {return i<<1|1;} template<class T> inline T at(T a,int i) {return a& (T(1)<<i);} template<class T> inline T nt(T a,int i) {return a^ (T(1)<<i);} template<class T> inline T s1(T a,int i) {return a| (T(1)<<i);} template<class T> inline T s0(T a,int i) {return a&~(T(1)<<i);} #endif // __BIT__ #ifndef __COMPARER__ #define __COMPARER__ const double eps = 1e-8; inline int cmp(double a,double b=0) {return fabs(b-a)<eps?0:((b-a)<eps?+1:-1);} template<typename type> inline int cmp(type a,type b=0) {return a==b?0:(b<a?+1:-1);} template<typename type> inline bool gt(type a,type b) {return cmp(a,b)> 0;} template<typename type> inline bool ge(type a,type b) {return cmp(a,b)>=0;} template<typename type> inline bool eq(type a,type b) {return cmp(a,b)==0;} template<typename type> inline bool ne(type a,type b) {return cmp(a,b)!=0;} template<typename type> inline bool le(type a,type b) {return cmp(a,b)<=0;} template<typename type> inline bool ls(type a,type b) {return cmp(a,b)< 0;} template<typename type> inline type smax(type a,type b) {return gt(a,b)?a:b;} template<typename type> inline type smin(type a,type b) {return ls(a,b)?a:b;} #endif // __COMPARER__ const int MAXV = 202; const int MAXE = 39802; double x[MAXV],y[MAXV]; double dist(int i,int j) { return sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j])); } double angle(int i,int j,int k) { if(i==j) return 0; if(j==k) return 0; if(i==k) return inf; double ans1=(x[j]-x[i])*(x[k]-x[j])+(y[j]-y[i])*(y[k]-y[j]); double ans2=sqrt((y[j]-y[i])*(y[j]-y[i])+(x[j]-x[i])*(x[j]-x[i])); double ans3=sqrt((y[k]-y[j])*(y[k]-y[j])+(x[k]-x[j])*(x[k]-x[j])); return acos(ans1/(ans2*ans3)); } struct node { int v; double w; }G[MAXE]; int _index,pre[MAXV],next[MAXE]; inline void clear(void) { _index=0; MEM(pre,-1); } inline void add(int u,int v,double w) { G[_index].v=v; G[_index].w=w; next[_index]=pre[u]; pre[u]=_index++; } double D; int n,m,u,v; deque<int> F,T; bool inq[MAXV][MAXV]; double dis[MAXV][MAXV]; inline void update(int xx,int yy,int x,int y,double w) { if(cmp(dis[xx][yy],dis[x][y]+w)>0) { dis[xx][yy]=dis[x][y]+w; if(!inq[xx][yy]) { inq[xx][yy]=true; if(F.empty()||cmp(dis[xx][yy],dis[F.front()][T.front()])>0) { F.push_back(xx); T.push_back(yy); } else { F.push_front(xx); T.push_front(yy); } } } } inline bool SPFA(int src,int des,int n,double A) { FOR(i,0,n-1) FOR(j,0,n-1) { inq[i][j]=false; dis[i][j]=inf; } inq[src][src]=true; dis[src][src]=0; while(!F.empty()) F.pop_front(); while(!T.empty()) T.pop_front(); F.push_back(src); T.push_back(src); while(!F.empty()) { int f=F.front(); F.pop_front(); int t=T.front(); T.pop_front(); if(t==des) return true; inq[f][t]=false; ECH(i,t,pre,next) { int v=G[i].v; double w=G[i].w; if(cmp(dis[f][t]+w,D)<=0&&cmp(angle(f,t,v),A)<=0) { update(t,v,f,t,w); } } } return false; } inline double bin(int n,double l=0,double r=pi) { double mid,ans=-1; while(cmp(l,r)<=0) { mid=(l+r)/2; if(SPFA(0,n-1,n,mid)) { ans=mid; r=mid-eps; } else l=mid+eps; } return ans; } int main() { #ifndef ONLINE_JUDGE freopen("Eco-driving.txt","r",stdin); #else #endif while(IN(n,m,D)) { FOR(i,0,n-1) IN(x[i],y[i]); clear(); while(m--) { IN(u,v); add(u-1,v-1,dist(u-1,v-1)); } double ans=bin(n); if(cmp(ans,-1)==0) OL("Impossible"); else printf("%.6f\n",ans*180/pi); } return 0; }