#include <cv.h> #include <io.h> #include <iostream> #include <string> #include <highgui.h> #include <ml.h> using namespace std; class Mysvm: public CvSVM { public: int get_alpha_count() { return this->sv_total; } int get_sv_dim() { return this->var_all; } int get_sv_count() { return this->decision_func->sv_count; } double* get_alpha() { return this->decision_func->alpha; } float** get_sv() { return this->sv; } float get_rho() { return this->decision_func->rho; } }; void Train() { char classifierSavePath[256] = "E:/work/INRIAPerson/pedestrianDetect-peopleFlow.txt"; string positivePath = "E:\\work\\INRIAPerson\\posgray\\"; string negativePath = "E:\\work\\INRIAPerson\\neggray\\"; int positiveSampleCount = 2416; int negativeSampleCount = 3654; int totalSampleCount = positiveSampleCount + negativeSampleCount; cout<<"//////////////////////////////////////////////////////////////////"<<endl; cout<<"totalSampleCount: "<<totalSampleCount<<endl; cout<<"positiveSampleCount: "<<positiveSampleCount<<endl; cout<<"negativeSampleCount: "<<negativeSampleCount<<endl; CvMat *sampleFeaturesMat = cvCreateMat(totalSampleCount , 3780, CV_32FC1); //64*128的训练样本,该矩阵将是totalSample*3780,64*64的训练样本,该矩阵将是totalSample*1764 cvSetZero(sampleFeaturesMat); CvMat *sampleLabelMat = cvCreateMat(totalSampleCount, 1, CV_32FC1);//样本标识 cvSetZero(sampleLabelMat); cout<<"************************************************************"<<endl; cout<<"start to training positive samples..."<<endl; char positiveImgName[256]; string path; for(int i=0; i<positiveSampleCount; i++) { memset(positiveImgName, '\0', 256*sizeof(char)); sprintf(positiveImgName, "%d.png", i+1); int len = strlen(positiveImgName); string tempStr = positiveImgName; path = positivePath + tempStr; cv::Mat img = cv::imread(path); if( img.data == NULL ) { cout<<"positive image sample load error: "<<i<<" "<<path<<endl; system("pause"); continue; } cv::HOGDescriptor hog(cv::Size(64,128), cv::Size(16,16), cv::Size(8,8), cv::Size(8,8), 9); vector<float> featureVec; hog.compute(img, featureVec, cv::Size(8,8)); int featureVecSize = featureVec.size(); for (int j=0; j<featureVecSize; j++) { CV_MAT_ELEM( *sampleFeaturesMat, float, i, j ) = featureVec[j]; } sampleLabelMat->data.fl[i] = 1; } cout<<"end of training for positive samples..."<<endl; cout<<"*********************************************************"<<endl; cout<<"start to train negative samples..."<<endl; char negativeImgName[256]; for (int i=0; i<negativeSampleCount; i++) { memset(negativeImgName, '\0', 256*sizeof(char)); sprintf(negativeImgName, "%d.png", i+1); path = negativePath + negativeImgName; cv::Mat img = cv::imread(path); if(img.data == NULL) { cout<<"negative image sample load error: "<<path<<endl; continue; } cv::HOGDescriptor hog(cv::Size(64,128), cv::Size(16,16), cv::Size(8,8), cv::Size(8,8), 9); vector<float> featureVec; hog.compute(img,featureVec,cv::Size(8,8));//计算HOG特征 int featureVecSize = featureVec.size(); for ( int j=0; j<featureVecSize; j ++) { CV_MAT_ELEM( *sampleFeaturesMat, float, i + positiveSampleCount, j ) = featureVec[ j ]; } sampleLabelMat->data.fl[ i + positiveSampleCount ] = -1; } cout<<"end of training for negative samples..."<<endl; cout<<"********************************************************"<<endl; cout<<"start to train for SVM classifier..."<<endl; CvSVMParams params; params.svm_type = CvSVM::C_SVC; params.kernel_type = CvSVM::LINEAR; params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 1000, FLT_EPSILON); params.C = 0.01; Mysvm svm; svm.train( sampleFeaturesMat, sampleLabelMat, NULL, NULL, params ); //用SVM线性分类器训练 svm.save(classifierSavePath); cvReleaseMat(&sampleFeaturesMat); cvReleaseMat(&sampleLabelMat); int supportVectorSize = svm.get_support_vector_count(); cout<<"support vector size of SVM:"<<supportVectorSize<<endl; cout<<"************************ end of training for SVM ******************"<<endl; CvMat *sv,*alp,*re;//所有样本特征向量 sv = cvCreateMat(supportVectorSize , 3780, CV_32FC1); alp = cvCreateMat(1 , supportVectorSize, CV_32FC1); re = cvCreateMat(1 , 3780, CV_32FC1); CvMat *res = cvCreateMat(1 , 1, CV_32FC1); cvSetZero(sv); cvSetZero(re); for(int i=0; i<supportVectorSize; i++) { memcpy( (float*)(sv->data.fl+i*3780), svm.get_support_vector(i), 3780*sizeof(float)); } double* alphaArr = svm.get_alpha(); int alphaCount = svm.get_alpha_count(); for(int i=0; i<supportVectorSize; i++) { alp->data.fl[i] = alphaArr[i]; } cvMatMul(alp, sv, re); int posCount = 0; for (int i=0; i<3780; i++) { re->data.fl[i] *= -1; } FILE* fp = fopen("E:/work/INRIAPerson/hogSVMDetector-peopleFlow1.txt","wb"); if( NULL == fp ) { return; } for(int i=0; i<3780; i++) { fprintf(fp,"%f \n",re->data.fl[i]); } float rho = svm.get_rho(); fprintf(fp, "%f", rho); cout<<"E:/work/INRIAPerson/hogSVMDetector.txt 保存完毕"<<endl;//保存HOG能识别的分类器 fclose(fp); return; } int main() { Train(); return 0; }