- python svm参数_SVM参数设置
头像收藏家
pythonsvm参数
主要参考了一些博客以及自己使用经验。收集来觉得比较有用的。LIBSVM数据格式需要----------------------决策属性条件属性a条件属性b...21:72:5...11:42:2...数据格式转换----------------------当数据较少时,可以用formatdatalibsvm轻松地将文本数据转换成为svm工具使用的数据。使用方法为:1,打开FormatDataLib
- xen编译时 Traceback (most recent call last):
sdulibh
linux编程基础虚拟机
Traceback(mostrecentcalllast):File"C:\libsvm2.88\tools\grid.py",line362,inmain()File"C:\libsvm2.88\tools\grid.py",line284,inmainprocess_options()File"C:\libsvm2.88\tools\grid.py",line91,inprocess_opti
- SVM算法练习
dedsec0x
支持向量机算法机器学习
目录一、前言二、使用libSVM②libsvm实现模型训练并写出决策函数的数学公式三、参考文章一、前言libSVM简介LIBSVM是台湾大学林智仁(LinChih-Jen)教授等开发设计的一个简单、易于使用和快速有效的SVM模式识别与回归的软件包,他不但提供了编译好的可在Windows系列系统的执行文件,还提供了源代码,方便改进、修改以及在其它操作系统上应用;该软件对SVM所涉及的参数调节相对比较
- 基于支持向量机SVM的电网负荷预测,libsvm工具箱详解,SVM详细原理
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机算法机器学习SVM电网负荷预测svr
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题SVM应用实例,基于支持向量机SVM的电网负荷预测代码结果分析展望摘要基于支持向量机SVM的电网负荷预测,SVM原理,SVM工具箱详解,SVM常见改进方法支持向量机SVM的详细原理SVM的定义支持向量机(supportvectormachines,SVM)是一种二分类模型,它的基本模型是定义在特征空
- sklearn 支持向量机实践总结
可爱的红薯
pythonsklearn支持向量机pythonsklearn支持向量机
转自http://www.cnblogs.com/pinard/p/6117515.html之前通过一个系列对支持向量机(以下简称SVM)算法的原理做了一个总结,本文从实践的角度对scikit-learnSVM算法库的使用做一个小结。scikit-learnSVM算法库封装了libsvm和liblinear的实现,仅仅重写了算法了接口部分。1.scikit-learnSVM算法库使用概述sciki
- matlab基于SVM的手写字体识别,svm 基于LIBSVM的matlab手写字体识别 AI-NN-PR 人工智能/神经网络/深度学习 276万源代码下载- www.pudn.com...
傅奇
文件名称:svm下载收藏√[54321]开发工具:matlab文件大小:126KB上传时间:2017-05-15下载次数:0详细说明:基于LIBSVM的matlab手写字体识别-AhandwrittenfontrecognitionbasedonSVM文件列表(点击判断是否您需要的文件,如果是垃圾请在下面评价投诉):chapter19\Chapter_CharacterRecognitionUsi
- 【全网最低价】司守奎《数学建模算法与应用》第三版pdf+数学建模资料(非常详细的算法学习和路线)小白推荐
阿贵学长
数学建模学习算法matlab性能优化深度学习
1.《数学建模算法与应用》主要内容包括时间序列、支持向量机、偏最小二乘面归分析、现代优化算法、数字图像处理、综合评价与决策方法、预测方法以及数学建模经典算法等内容。文章末尾有电子版PDF文件链接2.算法学习流程及详细过程主要算法:工具箱推荐遗传算法-beatxbx工具箱,求解速度很快,并行计算LIBSVM-比MATLAB自带工具箱好用得多yamlip,特别推荐,统一优化求解工具箱由于文件很多,学长
- matlab中的分类工具箱svm,MATLAB实现多分类和libsvm工具箱的安装使用详解
菩提流支
首先告诉大家MATLAB现在可以实现多类分类的问题!但是需要借助工具箱!下面介绍的是台湾林智仁教授的libsvm工具箱在MATLAB中的安装和使用:安装环境:Win7、MicrosoftVisualStudio2010MATLAB版本:R2010b编译器版本:MicrosoftVisualC++2010安装过程:网站去下载最新的SVM软件,找到DownloadLIBSVM,点击zipfile下载,
- 基于支持向量机SVM的风电场NWP数据预测,SVM的详细原理
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机机器学习算法matlab数据挖掘
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题SVM应用实例,基于SVM的风电场NWP预测结果分析展望支持向量机SVM的详细原理SVM的定义支持向量机(supportvectormachines,SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性
- 基于支持向量机SVM的采油机故障诊断,Libsvm故障的详细诊断,SVM的详细原理
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机机器学习算法matlab分类
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题SVM应用实例,基于SVM的采油机故障识别代码结果分析展望支持向量机SVM的详细原理SVM的定义支持向量机(supportvectormachines,SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线
- 基于粒子群改进的支持向量机SVM的情感分类识别,pso-svm情感分类识别
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机机器学习分类matlab人工智能
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题SVM应用实例,基于SVM的情感分类预测代码结果分析展望支持向量机SVM的详细原理SVM的定义支持向量机(supportvectormachines,SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性
- 基于支持向量机SVM的分类预测,基于SVM的雷击故障识别
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机机器学习分类matlab人工智能
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题SVM应用实例,基于SVM的雷击故障分类预测支持向量机SVM的详细原理SVM的定义支持向量机(supportvectormachines,SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。SV
- 基于k折交叉验证的支持向量机SVM的多分类预测,SVM的详细原理,SVM工具箱详解及注意事项
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机分类算法K折交叉验证
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题完整代码和数据下载链接:基于SVM多分类预测,基于k折交叉验证的支持向量机SVM的多分类预测(代码完整,数据齐全)资源-CSDN文库https://download.csdn.net/download/abc991835105/88782939SVM应用实例,基于SVM多分类预测,基于k折交叉验证的
- sklearn.svm.SVC 参数说明
人鱼线
机器学习
sklearn中的SVC函数本身这个函数也是基于libsvm实现的,所以在参数设置上有很多相似的地方。(PS:libsvm中的二次规划问题的解决算法是SMO)。sklearn.svm.SVC(C=1.0,kernel='rbf',degree=3,gamma='auto',coef0=0.0,shrinking=True,probability=False,tol=0.001,cache_size
- macOS 10.13.6下安装libsvm库
3ni
libsvm官网下载地址找到DownloadLIBSVM点击zipfile或者tar.gz即可进行下载下载完后解压,进入主目录,里面有README文件,里面是使用说明(都是英文...)先进主目录,就是解压完后的文件夹(libsvm-3.23),然后在shell中输入make命令,构建过程中会有警告(Warning),不用管,结束后再进入Python子目录,然后又是make,结束后会在主目录下生成l
- 西瓜书第六章课后习题
lammmya
6.1试证明样本空间中任意点x到超平面(w,b)的距离为式(6.2)。画了个图在纸上进行了证明,感觉这样自会通俗易懂些。6.2试使用LIBSVM,在西瓜数据集3.0α上分别用线性核和高斯核训练一个SVM,并比较其支持向量的差别。导入相应的包主体函数:设置参数,输出。数据特征可视化输出结果以及数据特征可视化最终结果如下图结果表明,使用线性核和高斯训练核的支持向量实际是一样的(两条线重合),且数量相同
- 基于交叉验证和网格优化的SVM分类算法,SVM的详细原理,SVM工具箱使用说明
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机分类算法交叉验证网格优化
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题完整代码和数据下载链接:基于交叉验证和网格优化的SVM分类算法,混淆矩阵图(代码完整,数据齐全)资源-CSDN文库https://download.csdn.net/download/abc991835105/88725374SVM应用实例,基于交叉验证和网格优化的SVM分类算法代码结果分析展望支持
- 支持向量机SVM详细原理,Libsvm工具箱详解,svm参数说明,svm应用实例,神经网络1000案例之15
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机机器学习神经网络matlab
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题SVM应用实例,基于SVM的股票价格预测支持向量机SVM的详细原理SVM的定义支持向量机(supportvectormachines,SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。SVM的
- 基于自定义权重的支持向量机,基于自定义权重的SVM
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机算法机器学习自定义权重SVM
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题完整代码和数据下载链接:基于自定义权重的支持向量机,基于自定义权重的SVM资源-CSDN文库https://download.csdn.net/download/abc991835105/88637048SVM应用实例,基于支持向量机SVM的港口分类代码结果分析展望支持向量机SVM的详细原理SVM的
- 基于支持向量机SVM的界面黏附能预测,SVM的详细原理,SVM工具箱使用说明
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机算法机器学习
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题完整代码和数据下载链接:基于支持向量机SVM的界面黏附能预测(代码完整,数据齐全)资源-CSDN文库https://download.csdn.net/download/abc991835105/88647878SVM应用实例,基于支持向量机SVM的界面黏附能预测代码结果分析展望支持向量机SVM的详
- SVM的详细原理,SVM工具箱使用说明,基于SVM的油压油温预测,基于支持向量机SVM的油压油温预测
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机算法机器学习油温油压预测
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题完整代码和数据下载链接:基于SVM的油压油温预测,基于支持向量机SVM的油压油温预测资源-CSDN文库https://download.csdn.net/download/abc991835105/88637069SVM应用实例,基于SVM的油压油温预测,基于支持向量机SVM的油压油温预测代码结果分
- 基于SVM的冷却剂流量预测,基于支持向量机SVM的冷却剂流量预测
神经网络机器学习智能算法画图绘图
100种启发式智能算法及应用支持向量机SVM神经网络支持向量机算法机器学习
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题完整代码和数据下载链接:基于SVM的冷却剂流量预测,基于支持向量机SVM的冷却剂流量预测(代码完整,数据齐全)资源-CSDN文库https://download.csdn.net/download/abc991835105/88611090SVM应用实例,基于SVM的冷却剂流量预测,基于支持向量机S
- 基于支持向量机SVM的港口分类,SVM原理,SVM工具箱详解
神经网络机器学习智能算法画图绘图
支持向量机SVM100种启发式智能算法及应用支持向量机分类算法
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题完整代码和数据下载链接:基于支持向量机SVM的港口分类(代码完整,数据齐全)资源-CSDN文库https://download.csdn.net/download/abc991835105/88636296SVM应用实例,基于支持向量机SVM的港口分类代码结果分析展望支持向量机SVM的详细原理SVM
- 基于SVM的用气量预测,基于支持向量机SVM的用气量预测
神经网络机器学习智能算法画图绘图
支持向量机SVM100种启发式智能算法及应用支持向量机算法机器学习
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题完整代码和数据下载链接:基于SVM的用气量预测,基于支持向量机SVM的用气量预测(代码完整,数据齐全)资源-CSDN文库https://download.csdn.net/download/abc991835105/88611067SVM应用实例,基于SVM的用气量预测,基于支持向量机SVM的用气量
- 基于SVM的鸟鸣识别,语谱分析
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机算法机器学习鸟鸣识别语谱分析
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题完整代码和数据下载链接:基于SVM的鸟鸣识别,语谱分析(代码完整,数据齐全)资源-CSDN文库https://download.csdn.net/download/abc991835105/88610830SVM应用实例,基于SVM的鸟鸣识别,语谱分析代码结果分析展望支持向量机SVM的详细原理SVM
- 【机器学习】libsvm 简单使用示例(C++)
十年一梦实验室
机器学习c++支持向量机人工智能开发语言
libsvm简单使用demo一、libsvm使用说明二、svm.h源码#ifndef_LIBSVM_H//如果没有定义_LIBSVM_H宏#define_LIBSVM_H//则定义_LIBSVM_H宏,用于防止重复包含#defineLIBSVM_VERSION317//定义一个宏,表示libsvm的版本号#ifdef__cplusplus//如果是C++编译器extern"C"{//则使用C语言的
- Libsvm中grid.py文件的解读
Kelly_Ai_Bai
python
1.导入相关文件这里重点讲一下__all__=['find_parameters']:_all__=['find_parameters']是Python中用于定义模块级别的变量__all__的语法,__all__是一个包含模块中应该被公开(即可以通过frommoduleimport*导入)的变量名的列表__all__是一个约定俗成的变量名,用于指定在使用frommoduleimport*语句时,应
- Matlab 2020b 中安装与使用libsvm
Kelly_Ai_Bai
matlab开发语言svm
一、下载与安装libsvm1.下载libsvm下载地址:https://www.csie.ntu.edu.tw/~cjlin/libsvm/下载后的结果:对该压缩包进行解压,最好解压到matlab安装路径中的toolbox文件夹下,如下图所示:注意:这里是matlab2020b和libsvm3.32(请注意版本的差异问题,版本的不一致或许可能会造成安装出现问题)2.设置路径在matlab2020b
- 如何在Matlab 2020b 中运行BAT文件中的python脚本指令
Kelly_Ai_Bai
python机器学习开发语言batch
这篇文章我将会阐述如何来使用libsvm进行模型的训练以及结果的预测。关于要运行的BAT文件及其内容介绍下面这是我的BAT文件(train_pixels)以及文件中的内容,可以看到BAT文件中的内容是运行python脚本的指令。后缀为.BAT的文件是一个批处理文件,通常用于批量执行一系列命令。此处的train_pixels.BAT文件中就是运行Python脚本。在MATLAB中运行外部的Batch
- 时间序列预测 | SVM时间序列预测建模,单步、多步(Python)
码农腾飞
时间序列预测(TSF)机器学习模型(ML)1024程序员节时间序列建模
(1)代码解读scikit-learn提供了3种支持向量机(SVM)的回归器:sklearn.svm.SVR、sklearn.svm.NuSVR和sklearn.svm.LinearSVR:(a)SVR(SupportVectorRegression)说明:SVR是基于libsvm的支持向量回归的实现。核函数:可以使用多种核函数,例如线性、多项式、RBF(径向基函数)和sigmoid等。主要参数:
- 数据采集高并发的架构应用
3golden
.net
问题的出发点:
最近公司为了发展需要,要扩大对用户的信息采集,每个用户的采集量估计约2W。如果用户量增加的话,将会大量照成采集量成3W倍的增长,但是又要满足日常业务需要,特别是指令要及时得到响应的频率次数远大于预期。
&n
- 不停止 MySQL 服务增加从库的两种方式
brotherlamp
linuxlinux视频linux资料linux教程linux自学
现在生产环境MySQL数据库是一主一从,由于业务量访问不断增大,故再增加一台从库。前提是不能影响线上业务使用,也就是说不能重启MySQL服务,为了避免出现其他情况,选择在网站访问量低峰期时间段操作。
一般在线增加从库有两种方式,一种是通过mysqldump备份主库,恢复到从库,mysqldump是逻辑备份,数据量大时,备份速度会很慢,锁表的时间也会很长。另一种是通过xtrabacku
- Quartz——SimpleTrigger触发器
eksliang
SimpleTriggerTriggerUtilsquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208166 一.概述
SimpleTrigger触发器,当且仅需触发一次或者以固定时间间隔周期触发执行;
二.SimpleTrigger的构造函数
SimpleTrigger(String name, String group):通过该构造函数指定Trigger所属组和名称;
Simpl
- Informatica应用(1)
18289753290
sqlworkflowlookup组件Informatica
1.如果要在workflow中调用shell脚本有一个command组件,在里面设置shell的路径;调度wf可以右键出现schedule,现在用的是HP的tidal调度wf的执行。
2.designer里面的router类似于SSIS中的broadcast(多播组件);Reset_Workflow_Var:参数重置 (比如说我这个参数初始是1在workflow跑得过程中变成了3我要在结束时还要
- python 获取图片验证码中文字
酷的飞上天空
python
根据现成的开源项目 http://code.google.com/p/pytesser/改写
在window上用easy_install安装不上 看了下源码发现代码很少 于是就想自己改写一下
添加支持网络图片的直接解析
#coding:utf-8
#import sys
#reload(sys)
#sys.s
- AJAX
永夜-极光
Ajax
1.AJAX功能:动态更新页面,减少流量消耗,减轻服务器负担
2.代码结构:
<html>
<head>
<script type="text/javascript">
function loadXMLDoc()
{
.... AJAX script goes here ...
- 创业OR读研
随便小屋
创业
现在研一,有种想创业的想法,不知道该不该去实施。因为对于的我情况这两者是矛盾的,可能就是鱼与熊掌不能兼得。
研一的生活刚刚过去两个月,我们学校主要的是
- 需求做得好与坏直接关系着程序员生活质量
aijuans
IT 生活
这个故事还得从去年换工作的事情说起,由于自己不太喜欢第一家公司的环境我选择了换一份工作。去年九月份我入职现在的这家公司,专门从事金融业内软件的开发。十一月份我们整个项目组前往北京做现场开发,从此苦逼的日子开始了。
系统背景:五月份就有同事前往甲方了解需求一直到6月份,后续几个月也完
- 如何定义和区分高级软件开发工程师
aoyouzi
在软件开发领域,高级开发工程师通常是指那些编写代码超过 3 年的人。这些人可能会被放到领导的位置,但经常会产生非常糟糕的结果。Matt Briggs 是一名高级开发工程师兼 Scrum 管理员。他认为,单纯使用年限来划分开发人员存在问题,两个同样具有 10 年开发经验的开发人员可能大不相同。近日,他发表了一篇博文,根据开发者所能发挥的作用划分软件开发工程师的成长阶段。
初
- Servlet的请求与响应
百合不是茶
servletget提交java处理post提交
Servlet是tomcat中的一个重要组成,也是负责客户端和服务端的中介
1,Http的请求方式(get ,post);
客户端的请求一般都会都是Servlet来接受的,在接收之前怎么来确定是那种方式提交的,以及如何反馈,Servlet中有相应的方法, http的get方式 servlet就是都doGet(
- web.xml配置详解之listener
bijian1013
javaweb.xmllistener
一.定义
<listener>
<listen-class>com.myapp.MyListener</listen-class>
</listener>
二.作用 该元素用来注册一个监听器类。可以收到事件什么时候发生以及用什么作为响
- Web页面性能优化(yahoo技术)
Bill_chen
JavaScriptAjaxWebcssYahoo
1.尽可能的减少HTTP请求数 content
2.使用CDN server
3.添加Expires头(或者 Cache-control) server
4.Gzip 组件 server
5.把CSS样式放在页面的上方。 css
6.将脚本放在底部(包括内联的) javascript
7.避免在CSS中使用Expressions css
8.将javascript和css独立成外部文
- 【MongoDB学习笔记八】MongoDB游标、分页查询、查询结果排序
bit1129
mongodb
游标
游标,简单的说就是一个查询结果的指针。游标作为数据库的一个对象,使用它是包括
声明
打开
循环抓去一定数目的文档直到结果集中的所有文档已经抓取完
关闭游标
游标的基本用法,类似于JDBC的ResultSet(hasNext判断是否抓去完,next移动游标到下一条文档),在获取一个文档集时,可以提供一个类似JDBC的FetchSize
- ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务 的解决方法
白糖_
ORA-12514
今天通过Oracle SQL*Plus连接远端服务器的时候提示“监听程序当前无法识别连接描述符中请求服务”,遂在网上找到了解决方案:
①打开Oracle服务器安装目录\NETWORK\ADMIN\listener.ora文件,你会看到如下信息:
# listener.ora Network Configuration File: D:\database\Oracle\net
- Eclipse 问题 A resource exists with a different case
bozch
eclipse
在使用Eclipse进行开发的时候,出现了如下的问题:
Description Resource Path Location TypeThe project was not built due to "A resource exists with a different case: '/SeenTaoImp_zhV2/bin/seentao'.&
- 编程之美-小飞的电梯调度算法
bylijinnan
编程之美
public class AptElevator {
/**
* 编程之美 小飞 电梯调度算法
* 在繁忙的时间,每次电梯从一层往上走时,我们只允许电梯停在其中的某一层。
* 所有乘客都从一楼上电梯,到达某层楼后,电梯听下来,所有乘客再从这里爬楼梯到自己的目的层。
* 在一楼时,每个乘客选择自己的目的层,电梯则自动计算出应停的楼层。
* 问:电梯停在哪
- SQL注入相关概念
chenbowen00
sqlWeb安全
SQL Injection:就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令。
具体来说,它是利用现有应用程序,将(恶意)的SQL命令注入到后台数据库引擎执行的能力,它可以通过在Web表单中输入(恶意)SQL语句得到一个存在安全漏洞的网站上的数据库,而不是按照设计者意图去执行SQL语句。
首先让我们了解什么时候可能发生SQ
- [光与电]光子信号战防御原理
comsci
原理
无论是在战场上,还是在后方,敌人都有可能用光子信号对人体进行控制和攻击,那么采取什么样的防御方法,最简单,最有效呢?
我们这里有几个山寨的办法,可能有些作用,大家如果有兴趣可以去实验一下
根据光
- oracle 11g新特性:Pending Statistics
daizj
oracledbms_stats
oracle 11g新特性:Pending Statistics 转
从11g开始,表与索引的统计信息收集完毕后,可以选择收集的统信息立即发布,也可以选择使新收集的统计信息处于pending状态,待确定处于pending状态的统计信息是安全的,再使处于pending状态的统计信息发布,这样就会避免一些因为收集统计信息立即发布而导致SQL执行计划走错的灾难。
在 11g 之前的版本中,D
- 快速理解RequireJs
dengkane
jqueryrequirejs
RequireJs已经流行很久了,我们在项目中也打算使用它。它提供了以下功能:
声明不同js文件之间的依赖
可以按需、并行、延时载入js库
可以让我们的代码以模块化的方式组织
初看起来并不复杂。 在html中引入requirejs
在HTML中,添加这样的 <script> 标签:
<script src="/path/to
- C语言学习四流程控制if条件选择、for循环和强制类型转换
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i, j;
scanf("%d %d", &i, &j);
if (i > j)
printf("i大于j\n");
else
printf("i小于j\n");
retu
- dictionary的使用要注意
dcj3sjt126com
IO
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
user.user_id , @"id",
user.username , @"username",
- Android 中的资源访问(Resource)
finally_m
xmlandroidStringdrawablecolor
简单的说,Android中的资源是指非代码部分。例如,在我们的Android程序中要使用一些图片来设置界面,要使用一些音频文件来设置铃声,要使用一些动画来显示特效,要使用一些字符串来显示提示信息。那么,这些图片、音频、动画和字符串等叫做Android中的资源文件。
在Eclipse创建的工程中,我们可以看到res和assets两个文件夹,是用来保存资源文件的,在assets中保存的一般是原生
- Spring使用Cache、整合Ehcache
234390216
springcacheehcache@Cacheable
Spring使用Cache
从3.1开始,Spring引入了对Cache的支持。其使用方法和原理都类似于Spring对事务管理的支持。Spring Cache是作用在方法上的,其核心思想是这样的:当我们在调用一个缓存方法时会把该方法参数和返回结果作为一个键值对存放在缓存中,等到下次利用同样的
- 当druid遇上oracle blob(clob)
jackyrong
oracle
http://blog.csdn.net/renfufei/article/details/44887371
众所周知,Oracle有很多坑, 所以才有了去IOE。
在使用Druid做数据库连接池后,其实偶尔也会碰到小坑,这就是使用开源项目所必须去填平的。【如果使用不开源的产品,那就不是坑,而是陷阱了,你都不知道怎么去填坑】
用Druid连接池,通过JDBC往Oracle数据库的
- easyui datagrid pagination获得分页页码、总页数等信息
ldzyz007
var grid = $('#datagrid');
var options = grid.datagrid('getPager').data("pagination").options;
var curr = options.pageNumber;
var total = options.total;
var max =
- 浅析awk里的数组
nigelzeng
二维数组array数组awk
awk绝对是文本处理中的神器,它本身也是一门编程语言,还有许多功能本人没有使用到。这篇文章就单单针对awk里的数组来进行讨论,如何利用数组来帮助完成文本分析。
有这么一组数据:
abcd,91#31#2012-12-31 11:24:00
case_a,136#19#2012-12-31 11:24:00
case_a,136#23#2012-12-31 1
- 搭建 CentOS 6 服务器(6) - TigerVNC
rensanning
centos
安装GNOME桌面环境
# yum groupinstall "X Window System" "Desktop"
安装TigerVNC
# yum -y install tigervnc-server tigervnc
启动VNC服务
# /etc/init.d/vncserver restart
# vncser
- Spring 数据库连接整理
tomcat_oracle
springbeanjdbc
1、数据库连接jdbc.properties配置详解 jdbc.url=jdbc:hsqldb:hsql://localhost/xdb jdbc.username=sa jdbc.password= jdbc.driver=不同的数据库厂商驱动,此处不一一列举 接下来,详细配置代码如下:
Spring连接池  
- Dom4J解析使用xpath java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
xp9802
用Dom4J解析xml,以前没注意,今天使用dom4j包解析xml时在xpath使用处报错
异常栈:java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
导入包 jaxen-1.1-beta-6.jar 解决;
&nb