Given a sequence of integers, a1, a2,..., an , we define its sign matrix S such that, for 1ijn , Sij = `` + " if Sij = `` - " if ai +...+ aj < 0 ; and Sij = ``0" otherwise.
For example, if (a1, a2, a3, a4) = (- 1, 5, - 4, 2) , then its sign matrix S is a 4×4 matrix:
1 | 2 | 3 | 4 | |
1 | - | + | 0 | + |
2 | + | + | + | |
3 | - | - | ||
4 | + |
We say that the sequence (-1, 5, -4, 2) generates the sign matrix. A sign matrix is valid if it can be generated by a sequence of integers.
Given a sequence of integers, it is easy to compute its sign matrix. This problem is about the opposite direction: Given a valid sign matrix, find a sequence of integers that generates the sign matrix. Note that two or more different sequences of integers can generate the same sign matrix. For example, the sequence (-2, 5, -3, 1) generates the same sign matrix as the sequence (-1,5, -4,2).
Write a program that, given a valid sign matrix, can find a sequence of integers that generates the sign matrix. You may assume that every integer in a sequence is between -10 and 10, both inclusive.
Your program is to read from standard input. The input consists of T test cases. The number of test cases T is given in the first line of the input. Each test case consists of two lines. The first line contains an integer n (1n10) , where n is the length of a sequence of integers. The second line contains a string of n(n + 1)/2 characters such that the first n characters correspond to the first row of the sign matrix, the next n - 1 characters to the second row, ... , and the last character to the n -th row.
Your program is to write to standard output. For each test case, output exactly one line containing a sequence of n integers which generates the sign matrix. If more than one sequence generates the sign matrix, you may output any one of them. Every integer in the sequence must be between -10 and 10, both inclusive.
3 4 -+0++++--+ 2 +++ 5 ++0+-+-+--+-+--
-2 5 -3 1 3 4 1 2 -3 4 -5
这道题很容易转化成:
已知s[0],s[1]...s[n]的大小关系,求a[1],a[2]...a[n]的值
不要想直接转化得到数列a的大小关系,那样不好找。而已知s后,可以直接用s[n]-s[n-1]求a[n];
并且只要让相邻的s相差为1,a的值的绝对值就不会超过10.
然后拓扑排序时先找到所有入度为0的点后,再进行“减度”。
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; int n; int const maxn = 10 + 5; int degree[maxn]; int map[maxn][maxn]; int s[maxn],ans[maxn]; char text[1000]; void init(){ memset(map,0,sizeof(map)); memset(degree,0,sizeof(degree)); } void topsort(){ int count = 0,low = -10; while(count != n+1){ int tag[maxn]; memset(tag,0,sizeof(tag)); for(int i = 0;i <= n;i++){ if(degree[i] == 0){ s[i] = low; degree[i] = -1; tag[i] = 1; count++; } } low++; for(int i = 0;i <= n;i++){ if(tag[i]){ for(int j = 0;j <= n;j++){ if(map[i][j]) degree[j]--; } } } } } int main(){ int t; scanf("%d",&t); while(t--){ scanf("%d%s",&n,text); init(); char f; int idx = 0; for(int i = 1;i <= n;i++){ for(int j = i;j <= n;j++){ f = text[idx++]; if(f == '+'){ map[i-1][j] = 1; degree[j]++; } else if(f == '-'){ map[j][i-1] = 1; degree[i-1]++; } } } topsort(); for(int i = 1;i <= n;i++){ ans[i] = s[i] - s[i-1]; } for(int i = 1;i < n;i++) printf("%d ",ans[i]); printf("%d\n",ans[n]); } return 0; }