图像分割之(四)OpenCV的GrabCut函数使用和源码解读
[email protected]
http://blog.csdn.net/zouxy09
上一文对GrabCut做了一个了解。OpenCV中的GrabCut算法是依据《"GrabCut" - Interactive Foreground Extraction using Iterated Graph Cuts》这篇文章来实现的。现在我对源码做了些注释,以便我们更深入的了解该算法。一直觉得论文和代码是有比较大的差别的,个人觉得脱离代码看论文,最多能看懂70%,剩下20%或者更多就需要通过阅读代码来获得了,那还有10%就和每个人的基础和知识储备相挂钩了。
接触时间有限,若有错误,还望各位前辈指正,谢谢。原论文的一些浅解见上一博文:
http://blog.csdn.net/zouxy09/article/details/8534954
一、GrabCut函数使用
在OpenCV的源码目录的samples的文件夹下,有grabCut的使用例程,请参考:
opencv\samples\cpp\grabcut.cpp。
而grabCut函数的API说明如下:
void cv::grabCut( InputArray _img, InputOutputArray _mask, Rect rect,
InputOutputArray _bgdModel, InputOutputArray _fgdModel,
int iterCount, int mode )
/*
****参数说明:
img——待分割的源图像,必须是8位3通道(CV_8UC3)图像,在处理的过程中不会被修改;
mask——掩码图像,如果使用掩码进行初始化,那么mask保存初始化掩码信息;在执行分割的时候,也可以将用户交互所设定的前景与背景保存到mask中,然后再传入grabCut函数;在处理结束之后,mask中会保存结果。mask只能取以下四种值:
GCD_BGD(=0),背景;
GCD_FGD(=1),前景;
GCD_PR_BGD(=2),可能的背景;
GCD_PR_FGD(=3),可能的前景。
如果没有手工标记GCD_BGD或者GCD_FGD,那么结果只会有GCD_PR_BGD或GCD_PR_FGD;
rect——用于限定需要进行分割的图像范围,只有该矩形窗口内的图像部分才被处理;
bgdModel——背景模型,如果为null,函数内部会自动创建一个bgdModel;bgdModel必须是单通道浮点型(CV_32FC1)图像,且行数只能为1,列数只能为13x5;
fgdModel——前景模型,如果为null,函数内部会自动创建一个fgdModel;fgdModel必须是单通道浮点型(CV_32FC1)图像,且行数只能为1,列数只能为13x5;
iterCount——迭代次数,必须大于0;
mode——用于指示grabCut函数进行什么操作,可选的值有:
GC_INIT_WITH_RECT(=0),用矩形窗初始化GrabCut;
GC_INIT_WITH_MASK(=1),用掩码图像初始化GrabCut;
GC_EVAL(=2),执行分割。
*/
二、GrabCut源码解读
其中源码包含了gcgraph.hpp这个构建图和max flow/min cut算法的实现文件,这个文件暂时没有解读,后面再更新了。
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- #include "precomp.hpp"
- #include "gcgraph.hpp"
- #include <limits>
-
- using namespace cv;
-
-
-
-
-
-
-
-
-
-
- class GMM
- {
- public:
- static const int componentsCount = 5;
-
- GMM( Mat& _model );
- double operator()( const Vec3d color ) const;
- double operator()( int ci, const Vec3d color ) const;
- int whichComponent( const Vec3d color ) const;
-
- void initLearning();
- void addSample( int ci, const Vec3d color );
- void endLearning();
-
- private:
- void calcInverseCovAndDeterm( int ci );
- Mat model;
- double* coefs;
- double* mean;
- double* cov;
-
- double inverseCovs[componentsCount][3][3];
- double covDeterms[componentsCount];
-
- double sums[componentsCount][3];
- double prods[componentsCount][3][3];
- int sampleCounts[componentsCount];
- int totalSampleCount;
- };
-
-
- GMM::GMM( Mat& _model )
- {
-
-
- const int modelSize = 3 + 9 + 1;
- if( _model.empty() )
- {
-
- _model.create( 1, modelSize*componentsCount, CV_64FC1 );
- _model.setTo(Scalar(0));
- }
- else if( (_model.type() != CV_64FC1) || (_model.rows != 1) || (_model.cols != modelSize*componentsCount) )
- CV_Error( CV_StsBadArg, "_model must have CV_64FC1 type, rows == 1 and cols == 13*componentsCount" );
-
- model = _model;
-
-
-
- coefs = model.ptr<double>(0);
- mean = coefs + componentsCount;
- cov = mean + 3*componentsCount;
-
- for( int ci = 0; ci < componentsCount; ci++ )
- if( coefs[ci] > 0 )
-
-
- calcInverseCovAndDeterm( ci );
- }
-
-
-
-
-
- double GMM::operator()( const Vec3d color ) const
- {
- double res = 0;
- for( int ci = 0; ci < componentsCount; ci++ )
- res += coefs[ci] * (*this)(ci, color );
- return res;
- }
-
-
-
- double GMM::operator()( int ci, const Vec3d color ) const
- {
- double res = 0;
- if( coefs[ci] > 0 )
- {
- CV_Assert( covDeterms[ci] > std::numeric_limits<double>::epsilon() );
- Vec3d diff = color;
- double* m = mean + 3*ci;
- diff[0] -= m[0]; diff[1] -= m[1]; diff[2] -= m[2];
- double mult = diff[0]*(diff[0]*inverseCovs[ci][0][0] + diff[1]*inverseCovs[ci][1][0] + diff[2]*inverseCovs[ci][2][0])
- + diff[1]*(diff[0]*inverseCovs[ci][0][1] + diff[1]*inverseCovs[ci][1][1] + diff[2]*inverseCovs[ci][2][1])
- + diff[2]*(diff[0]*inverseCovs[ci][0][2] + diff[1]*inverseCovs[ci][1][2] + diff[2]*inverseCovs[ci][2][2]);
- res = 1.0f/sqrt(covDeterms[ci]) * exp(-0.5f*mult);
- }
- return res;
- }
-
-
- int GMM::whichComponent( const Vec3d color ) const
- {
- int k = 0;
- double max = 0;
-
- for( int ci = 0; ci < componentsCount; ci++ )
- {
- double p = (*this)( ci, color );
- if( p > max )
- {
- k = ci;
- max = p;
- }
- }
- return k;
- }
-
-
- void GMM::initLearning()
- {
- for( int ci = 0; ci < componentsCount; ci++)
- {
- sums[ci][0] = sums[ci][1] = sums[ci][2] = 0;
- prods[ci][0][0] = prods[ci][0][1] = prods[ci][0][2] = 0;
- prods[ci][1][0] = prods[ci][1][1] = prods[ci][1][2] = 0;
- prods[ci][2][0] = prods[ci][2][1] = prods[ci][2][2] = 0;
- sampleCounts[ci] = 0;
- }
- totalSampleCount = 0;
- }
-
-
-
-
-
- void GMM::addSample( int ci, const Vec3d color )
- {
- sums[ci][0] += color[0]; sums[ci][1] += color[1]; sums[ci][2] += color[2];
- prods[ci][0][0] += color[0]*color[0]; prods[ci][0][1] += color[0]*color[1]; prods[ci][0][2] += color[0]*color[2];
- prods[ci][1][0] += color[1]*color[0]; prods[ci][1][1] += color[1]*color[1]; prods[ci][1][2] += color[1]*color[2];
- prods[ci][2][0] += color[2]*color[0]; prods[ci][2][1] += color[2]*color[1]; prods[ci][2][2] += color[2]*color[2];
- sampleCounts[ci]++;
- totalSampleCount++;
- }
-
-
-
- void GMM::endLearning()
- {
- const double variance = 0.01;
- for( int ci = 0; ci < componentsCount; ci++ )
- {
- int n = sampleCounts[ci];
- if( n == 0 )
- coefs[ci] = 0;
- else
- {
-
- coefs[ci] = (double)n/totalSampleCount;
-
-
- double* m = mean + 3*ci;
- m[0] = sums[ci][0]/n; m[1] = sums[ci][1]/n; m[2] = sums[ci][2]/n;
-
-
- double* c = cov + 9*ci;
- c[0] = prods[ci][0][0]/n - m[0]*m[0]; c[1] = prods[ci][0][1]/n - m[0]*m[1]; c[2] = prods[ci][0][2]/n - m[0]*m[2];
- c[3] = prods[ci][1][0]/n - m[1]*m[0]; c[4] = prods[ci][1][1]/n - m[1]*m[1]; c[5] = prods[ci][1][2]/n - m[1]*m[2];
- c[6] = prods[ci][2][0]/n - m[2]*m[0]; c[7] = prods[ci][2][1]/n - m[2]*m[1]; c[8] = prods[ci][2][2]/n - m[2]*m[2];
-
-
- double dtrm = c[0]*(c[4]*c[8]-c[5]*c[7]) - c[1]*(c[3]*c[8]-c[5]*c[6]) + c[2]*(c[3]*c[7]-c[4]*c[6]);
- if( dtrm <= std::numeric_limits<double>::epsilon() )
- {
-
-
-
- c[0] += variance;
- c[4] += variance;
- c[8] += variance;
- }
-
-
- calcInverseCovAndDeterm(ci);
- }
- }
- }
-
-
- void GMM::calcInverseCovAndDeterm( int ci )
- {
- if( coefs[ci] > 0 )
- {
-
- double *c = cov + 9*ci;
- double dtrm =
- covDeterms[ci] = c[0]*(c[4]*c[8]-c[5]*c[7]) - c[1]*(c[3]*c[8]-c[5]*c[6])
- + c[2]*(c[3]*c[7]-c[4]*c[6]);
-
-
-
-
-
-
-
- CV_Assert( dtrm > std::numeric_limits<double>::epsilon() );
-
- inverseCovs[ci][0][0] = (c[4]*c[8] - c[5]*c[7]) / dtrm;
- inverseCovs[ci][1][0] = -(c[3]*c[8] - c[5]*c[6]) / dtrm;
- inverseCovs[ci][2][0] = (c[3]*c[7] - c[4]*c[6]) / dtrm;
- inverseCovs[ci][0][1] = -(c[1]*c[8] - c[2]*c[7]) / dtrm;
- inverseCovs[ci][1][1] = (c[0]*c[8] - c[2]*c[6]) / dtrm;
- inverseCovs[ci][2][1] = -(c[0]*c[7] - c[1]*c[6]) / dtrm;
- inverseCovs[ci][0][2] = (c[1]*c[5] - c[2]*c[4]) / dtrm;
- inverseCovs[ci][1][2] = -(c[0]*c[5] - c[2]*c[3]) / dtrm;
- inverseCovs[ci][2][2] = (c[0]*c[4] - c[1]*c[3]) / dtrm;
- }
- }
-
-
-
-
-
-
-
-
-
-
- static double calcBeta( const Mat& img )
- {
- double beta = 0;
- for( int y = 0; y < img.rows; y++ )
- {
- for( int x = 0; x < img.cols; x++ )
- {
-
-
- Vec3d color = img.at<Vec3b>(y,x);
- if( x>0 )
- {
- Vec3d diff = color - (Vec3d)img.at<Vec3b>(y,x-1);
- beta += diff.dot(diff);
- }
- if( y>0 && x>0 )
- {
- Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x-1);
- beta += diff.dot(diff);
- }
- if( y>0 )
- {
- Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x);
- beta += diff.dot(diff);
- }
- if( y>0 && x<img.cols-1)
- {
- Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x+1);
- beta += diff.dot(diff);
- }
- }
- }
- if( beta <= std::numeric_limits<double>::epsilon() )
- beta = 0;
- else
- beta = 1.f / (2 * beta/(4*img.cols*img.rows - 3*img.cols - 3*img.rows + 2) );
-
- return beta;
- }
-
-
-
-
-
-
-
-
-
-
- static void calcNWeights( const Mat& img, Mat& leftW, Mat& upleftW, Mat& upW,
- Mat& uprightW, double beta, double gamma )
- {
-
-
-
- const double gammaDivSqrt2 = gamma / std::sqrt(2.0f);
-
- leftW.create( img.rows, img.cols, CV_64FC1 );
- upleftW.create( img.rows, img.cols, CV_64FC1 );
- upW.create( img.rows, img.cols, CV_64FC1 );
- uprightW.create( img.rows, img.cols, CV_64FC1 );
- for( int y = 0; y < img.rows; y++ )
- {
- for( int x = 0; x < img.cols; x++ )
- {
- Vec3d color = img.at<Vec3b>(y,x);
- if( x-1>=0 )
- {
- Vec3d diff = color - (Vec3d)img.at<Vec3b>(y,x-1);
- leftW.at<double>(y,x) = gamma * exp(-beta*diff.dot(diff));
- }
- else
- leftW.at<double>(y,x) = 0;
- if( x-1>=0 && y-1>=0 )
- {
- Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x-1);
- upleftW.at<double>(y,x) = gammaDivSqrt2 * exp(-beta*diff.dot(diff));
- }
- else
- upleftW.at<double>(y,x) = 0;
- if( y-1>=0 )
- {
- Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x);
- upW.at<double>(y,x) = gamma * exp(-beta*diff.dot(diff));
- }
- else
- upW.at<double>(y,x) = 0;
- if( x+1<img.cols && y-1>=0 )
- {
- Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x+1);
- uprightW.at<double>(y,x) = gammaDivSqrt2 * exp(-beta*diff.dot(diff));
- }
- else
- uprightW.at<double>(y,x) = 0;
- }
- }
- }
-
-
-
-
-
-
-
-
-
- static void checkMask( const Mat& img, const Mat& mask )
- {
- if( mask.empty() )
- CV_Error( CV_StsBadArg, "mask is empty" );
- if( mask.type() != CV_8UC1 )
- CV_Error( CV_StsBadArg, "mask must have CV_8UC1 type" );
- if( mask.cols != img.cols || mask.rows != img.rows )
- CV_Error( CV_StsBadArg, "mask must have as many rows and cols as img" );
- for( int y = 0; y < mask.rows; y++ )
- {
- for( int x = 0; x < mask.cols; x++ )
- {
- uchar val = mask.at<uchar>(y,x);
- if( val!=GC_BGD && val!=GC_FGD && val!=GC_PR_BGD && val!=GC_PR_FGD )
- CV_Error( CV_StsBadArg, "mask element value must be equel"
- "GC_BGD or GC_FGD or GC_PR_BGD or GC_PR_FGD" );
- }
- }
- }
-
-
-
-
-
-
- static void initMaskWithRect( Mat& mask, Size imgSize, Rect rect )
- {
- mask.create( imgSize, CV_8UC1 );
- mask.setTo( GC_BGD );
-
- rect.x = max(0, rect.x);
- rect.y = max(0, rect.y);
- rect.width = min(rect.width, imgSize.width-rect.x);
- rect.height = min(rect.height, imgSize.height-rect.y);
-
- (mask(rect)).setTo( Scalar(GC_PR_FGD) );
- }
-
-
-
-
-
- static void initGMMs( const Mat& img, const Mat& mask, GMM& bgdGMM, GMM& fgdGMM )
- {
- const int kMeansItCount = 10;
- const int kMeansType = KMEANS_PP_CENTERS;
-
- Mat bgdLabels, fgdLabels;
- vector<Vec3f> bgdSamples, fgdSamples;
- Point p;
- for( p.y = 0; p.y < img.rows; p.y++ )
- {
- for( p.x = 0; p.x < img.cols; p.x++ )
- {
-
- if( mask.at<uchar>(p) == GC_BGD || mask.at<uchar>(p) == GC_PR_BGD )
- bgdSamples.push_back( (Vec3f)img.at<Vec3b>(p) );
- else
- fgdSamples.push_back( (Vec3f)img.at<Vec3b>(p) );
- }
- }
- CV_Assert( !bgdSamples.empty() && !fgdSamples.empty() );
-
-
-
- Mat _bgdSamples( (int)bgdSamples.size(), 3, CV_32FC1, &bgdSamples[0][0] );
- kmeans( _bgdSamples, GMM::componentsCount, bgdLabels,
- TermCriteria( CV_TERMCRIT_ITER, kMeansItCount, 0.0), 0, kMeansType );
- Mat _fgdSamples( (int)fgdSamples.size(), 3, CV_32FC1, &fgdSamples[0][0] );
- kmeans( _fgdSamples, GMM::componentsCount, fgdLabels,
- TermCriteria( CV_TERMCRIT_ITER, kMeansItCount, 0.0), 0, kMeansType );
-
-
- bgdGMM.initLearning();
- for( int i = 0; i < (int)bgdSamples.size(); i++ )
- bgdGMM.addSample( bgdLabels.at<int>(i,0), bgdSamples[i] );
- bgdGMM.endLearning();
-
- fgdGMM.initLearning();
- for( int i = 0; i < (int)fgdSamples.size(); i++ )
- fgdGMM.addSample( fgdLabels.at<int>(i,0), fgdSamples[i] );
- fgdGMM.endLearning();
- }
-
-
-
-
-
- static void assignGMMsComponents( const Mat& img, const Mat& mask, const GMM& bgdGMM,
- const GMM& fgdGMM, Mat& compIdxs )
- {
- Point p;
- for( p.y = 0; p.y < img.rows; p.y++ )
- {
- for( p.x = 0; p.x < img.cols; p.x++ )
- {
- Vec3d color = img.at<Vec3b>(p);
-
- compIdxs.at<int>(p) = mask.at<uchar>(p) == GC_BGD || mask.at<uchar>(p) == GC_PR_BGD ?
- bgdGMM.whichComponent(color) : fgdGMM.whichComponent(color);
- }
- }
- }
-
-
-
-
-
- static void learnGMMs( const Mat& img, const Mat& mask, const Mat& compIdxs, GMM& bgdGMM, GMM& fgdGMM )
- {
- bgdGMM.initLearning();
- fgdGMM.initLearning();
- Point p;
- for( int ci = 0; ci < GMM::componentsCount; ci++ )
- {
- for( p.y = 0; p.y < img.rows; p.y++ )
- {
- for( p.x = 0; p.x < img.cols; p.x++ )
- {
- if( compIdxs.at<int>(p) == ci )
- {
- if( mask.at<uchar>(p) == GC_BGD || mask.at<uchar>(p) == GC_PR_BGD )
- bgdGMM.addSample( ci, img.at<Vec3b>(p) );
- else
- fgdGMM.addSample( ci, img.at<Vec3b>(p) );
- }
- }
- }
- }
- bgdGMM.endLearning();
- fgdGMM.endLearning();
- }
-
-
-
-
-
-
-
-
- static void constructGCGraph( const Mat& img, const Mat& mask, const GMM& bgdGMM, const GMM& fgdGMM, double lambda,
- const Mat& leftW, const Mat& upleftW, const Mat& upW, const Mat& uprightW,
- GCGraph<double>& graph )
- {
- int vtxCount = img.cols*img.rows;
- int edgeCount = 2*(4*vtxCount - 3*(img.cols + img.rows) + 2);
-
- graph.create(vtxCount, edgeCount);
- Point p;
- for( p.y = 0; p.y < img.rows; p.y++ )
- {
- for( p.x = 0; p.x < img.cols; p.x++)
- {
-
- int vtxIdx = graph.addVtx();
- Vec3b color = img.at<Vec3b>(p);
-
-
-
-
- double fromSource, toSink;
- if( mask.at<uchar>(p) == GC_PR_BGD || mask.at<uchar>(p) == GC_PR_FGD )
- {
-
- fromSource = -log( bgdGMM(color) );
- toSink = -log( fgdGMM(color) );
- }
- else if( mask.at<uchar>(p) == GC_BGD )
- {
-
- fromSource = 0;
- toSink = lambda;
- }
- else
- {
- fromSource = lambda;
- toSink = 0;
- }
-
- graph.addTermWeights( vtxIdx, fromSource, toSink );
-
-
-
-
- if( p.x>0 )
- {
- double w = leftW.at<double>(p);
- graph.addEdges( vtxIdx, vtxIdx-1, w, w );
- }
- if( p.x>0 && p.y>0 )
- {
- double w = upleftW.at<double>(p);
- graph.addEdges( vtxIdx, vtxIdx-img.cols-1, w, w );
- }
- if( p.y>0 )
- {
- double w = upW.at<double>(p);
- graph.addEdges( vtxIdx, vtxIdx-img.cols, w, w );
- }
- if( p.x<img.cols-1 && p.y>0 )
- {
- double w = uprightW.at<double>(p);
- graph.addEdges( vtxIdx, vtxIdx-img.cols+1, w, w );
- }
- }
- }
- }
-
-
-
-
-
- static void estimateSegmentation( GCGraph<double>& graph, Mat& mask )
- {
-
- graph.maxFlow();
- Point p;
- for( p.y = 0; p.y < mask.rows; p.y++ )
- {
- for( p.x = 0; p.x < mask.cols; p.x++ )
- {
-
-
- if( mask.at<uchar>(p) == GC_PR_BGD || mask.at<uchar>(p) == GC_PR_FGD )
- {
- if( graph.inSourceSegment( p.y*mask.cols+p.x ) )
- mask.at<uchar>(p) = GC_PR_FGD;
- else
- mask.at<uchar>(p) = GC_PR_BGD;
- }
- }
- }
- }
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- void cv::grabCut( InputArray _img, InputOutputArray _mask, Rect rect,
- InputOutputArray _bgdModel, InputOutputArray _fgdModel,
- int iterCount, int mode )
- {
- Mat img = _img.getMat();
- Mat& mask = _mask.getMatRef();
- Mat& bgdModel = _bgdModel.getMatRef();
- Mat& fgdModel = _fgdModel.getMatRef();
-
- if( img.empty() )
- CV_Error( CV_StsBadArg, "image is empty" );
- if( img.type() != CV_8UC3 )
- CV_Error( CV_StsBadArg, "image mush have CV_8UC3 type" );
-
- GMM bgdGMM( bgdModel ), fgdGMM( fgdModel );
- Mat compIdxs( img.size(), CV_32SC1 );
-
- if( mode == GC_INIT_WITH_RECT || mode == GC_INIT_WITH_MASK )
- {
- if( mode == GC_INIT_WITH_RECT )
- initMaskWithRect( mask, img.size(), rect );
- else
- checkMask( img, mask );
- initGMMs( img, mask, bgdGMM, fgdGMM );
- }
-
- if( iterCount <= 0)
- return;
-
- if( mode == GC_EVAL )
- checkMask( img, mask );
-
- const double gamma = 50;
- const double lambda = 9*gamma;
- const double beta = calcBeta( img );
-
- Mat leftW, upleftW, upW, uprightW;
- calcNWeights( img, leftW, upleftW, upW, uprightW, beta, gamma );
-
- for( int i = 0; i < iterCount; i++ )
- {
- GCGraph<double> graph;
- assignGMMsComponents( img, mask, bgdGMM, fgdGMM, compIdxs );
- learnGMMs( img, mask, compIdxs, bgdGMM, fgdGMM );
- constructGCGraph(img, mask, bgdGMM, fgdGMM, lambda, leftW, upleftW, upW, uprightW, graph );
- estimateSegmentation( graph, mask );
- }
- }