算法设计作业LIS(最长递增子序列)

/*
  功能说明: 给定一个非负整数数组,找出最长递增子序列.
         作者: hfjiang
  完成日期: 2005-3-13
*/
#include<iostream>
using namespace std;
#define GT  1000
#define LT -1000
#define EQ  5000
int max(const int i,const int j,const int T[6][6],const int size);
int main()
{
 //int a[6] = {0,5,4,2,1,3};
 int a[6] = {0,1,2,3,4,5};

 //没考虑数组中有相同元素的情况,其实也超简单

//更多数的,把6换一下就行.
 //int size = sizeof(a) / 4;
 int size = 6;
 int T[6][6];
 for(int i = 0;i < size;i++){
  for(int j = 0 ; j < size;j++){
   T[i][j] = 0;
  }
 }
 
 //build relation table
    for( i = 0;i < size;i++){
  for(int j = i+1 ; j < size;j++){
   if(a[i] > a[j]) T[i][j] = GT;
            if(a[i] == a[j]) T[i][j] = EQ;
   if(a[i] < a[j]) T[i][j] = LT;
  }
 }
 for( i = 0;i < size;i++){
  cout<<endl;
  for(int j = 0;j < size;j++){
   cout << T[i][j] <<"/t";
  }
 }
 cout << endl;
 cout << endl;

    //dynamic programing
 for( i = 0;i < size;i++)
  T[i][i] = 1;
 for( i = 0;i < size;i++){
  for(int j = i+1 ; j < size;j++){
   if(T[i][j] == GT)
    T[i][j] = 0; 
  }
 }
   
 for(i = size-2 ;i >= 0;i--){
  for(int j = i+1 ;j < size ;j++){
   if(T[i][j] == LT){
    //T[i][j] = max{A[j][K]|k=j...size-1};
    T[i][j] = max(j,j,T,size) + 1;
   }
  }
       
 }
 for( i = 0;i < size;i++){
  cout<<endl;
  for(int j = 0;j < size;j++){
   cout << T[i][j] <<"/t";
  }
 }
 
 return 0;

}
int max(const int i,const int j,const int T[6][6],const int size){
/*
  Return the max value of T[i][j....size-1];
*/
   int max = T[i][j];
   for(int k = j+1;k < size;k++){
    max = max < T[i][k] ? T[i][k] : max;
   }
   return max;
}

cost: 0(n^3)

程序设计思想:

D.P

1。首先建立关系表:大小偏序关系。只有小于关系能走(上三角矩阵) . 对角线初始化为1.

2.  回溯:从上三角矩阵从下往上找最大值。

3. 上面程序并未给出子序列:只需在最终矩阵中找每行最大对应的元素,即为LIS中元素。

4. 最终可能有多条路径:因为可能存在多个LIS。

D.P

1。首先建立关系表:大小偏序关系。只有小于关系能走(上三角矩阵) . 对角线初始化为1.

2.  回溯:从上三角矩阵从下往上找最大值。

3. 上面程序并未给出子序列:只需在最终矩阵中找每行最大对应的元素,即为LIS中元素。

4. 最终可能有多条路径:因为可能存在多个LIS。

D.P

1。首先建立关系表:大小偏序关系。只有小于关系能走(上三角矩阵) . 对角线初始化为1.

2.  回溯:从上三角矩阵从下往上找最大值。

3. 上面程序并未给出子序列:只需在最终矩阵中找每行最大对应的元素,即为LIS中元素。

4. 最终可能有多条路径:因为可能存在多个LIS。

D.P

1。首先建立关系表:大小偏序关系。只有小于关系能走(上三角矩阵) . 对角线初始化为1.

2.  回溯:从上三角矩阵从下往上找最大值。

3. 上面程序并未给出子序列:只需在最终矩阵中找每行最大对应的元素,即为LIS中元素。

4. 最终可能有多条路径:因为可能存在多个LIS。

Plz enjoy!

你可能感兴趣的:(算法设计作业LIS(最长递增子序列))