hdu3555数位dp

Bomb

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)
Total Submission(s): 4063    Accepted Submission(s): 1403


Problem Description
The counter-terrorists found a time bomb in the dust. But this time the terrorists improve on the time bomb. The number sequence of the time bomb counts from 1 to N. If the current number sequence includes the sub-sequence "49", the power of the blast would add one point.
Now the counter-terrorist knows the number N. They want to know the final points of the power. Can you help them?
 

Input
The first line of input consists of an integer T (1 <= T <= 10000), indicating the number of test cases. For each test case, there will be an integer N (1 <= N <= 2^63-1) as the description.

The input terminates by end of file marker.
 

Output
For each test case, output an integer indicating the final points of the power.
 

Sample Input
   
   
   
   
3 1 50 500
 

Sample Output
   
   
   
   
0 1 15
Hint
From 1 to 500, the numbers that include the sub-sequence "49" are "49","149","249","349","449","490","491","492","493","494","495","496","497","498","499", so the answer is 15.
题意:求0-n中出现了多少个含有49的数字。
小结:第一次做数位dp的题,对数位dp的一般模式有了一些了解,不过还是有很多地方没搞懂,dp的初始化,这里为什么n要++,为什么以i开始的时候,后面呢能取到所有出现49的情况等等。
代码:
#include<iostream>
#include<vector>
#include<string>
#include<queue>
#include<map>
#include<cstdio>
#include<cstring>
#define maxn 2005
#define ll unsigned long long
#define INF 0xfffffff
using namespace std;
int digit[25];
ll dp[25][3];
//dp[i][0]表示长度为i不出现49的数字个数
//dp[i][1]表示长度为i以9开头不出现49的数字个数
//dp[i][2]表示长度为i出现49的数字个数
void init()
{
    memset(dp,0,sizeof(0));
    dp[0][0]=1;//这里一开始还是不理解,不过从后面推的话是正确的
    for(int i=1;i<=20;i++)
    {
        dp[i][0]=10*dp[i-1][0]-dp[i-1][1];
        dp[i][1]=dp[i-1][0];
        dp[i][2]=dp[i-1][1]+10*dp[i-1][2];
    }
}
int main()
{
    int t;
    ll n,ans;
    init();
    cin>>t;
    while(t--)
    {
        ans=0;
        cin>>n;
        n++;//不理解为什么要++
        //求出n的每个数位
        int cnt=0;
        memset(digit,0,sizeof(digit));
        while(n)
        {
            digit[++cnt]=n%10;
            n/=10;
        }
        int flag=0;//标记是否前面出现过49
        for(int i=cnt;i>=1;i--)
        {
            ans+=digit[i]*dp[i-1][2];//i-1位含有49   不理解这里有可能以digit[i]开头的,后面的所有dp[i-1][2]情况不是都取的到
            if(flag)
            {
                ans+=digit[i]*dp[i-1][0];//i-1位不含有49    这里也是
            }
            if(flag==0&&digit[i]>4)
            {
                ans+=dp[i-1][1];
            }
            if(digit[i]==9&&digit[i+1]==4)
            flag=1;
        }
        cout<<ans<<endl;
    }
	return 0;
}
第二种做法:标准的记忆化搜索
今天大强给我讲了下划状态图,说dp的题都可以这种方法来做,一般状态图画出来的话就好些状态转移方程。
这题在花状态图的时候用了四个标记变量:pos记录当前的位置,pre记录上一个位置的数字,flag记录是否出现过49,limit记录是否受限制,就是能否取到9.
代码:
#include<iostream>
#include<cstring>
#define ll __int64
using namespace std;
int digit[25];
ll dp[25][10][3];//dp记录的是没有限制的情况下的状态
ll dfs(int pos,int pre,int flag,int limit)
{
    if(pos==-1) return flag==1;//如果已经遍历完n,最后一个数字是否为含有49的数字看flag
    if(!limit&&dp[pos][pre][flag]!=-1) return dp[pos][pre][flag];
    ll sum=0;
    int end=(limit?digit[pos]:9);
    for(int i=0;i<=end;i++)
    {
        if(pre==4&&i==9)
        sum+=dfs(pos-1,i,1,limit&&i==end);//受限制的条件是前面的所有位都是取最大的
        else
        sum+=dfs(pos-1,i,flag,limit&&i==end);
    }
    if(!limit) dp[pos][pre][flag]=sum;
    return sum;
}
ll work(ll n)
{
    int cnt=0;
    while(n)
    {
        digit[cnt++]=n%10;
        n/=10;
    }
    memset(dp,-1,sizeof(dp));
    ll ans=dfs(cnt-1,-1,0,1);
    return ans;
}
int main()
{
    int t;
    ll n;
    cin>>t;
    while(t--)
    {
        cin>>n;
        cout<<work(n)<<endl;
    }
    return 0;
}

你可能感兴趣的:(hdu3555数位dp)