- FLUTTER 开发资料集(持续更新)
ssslar
flutterflutter
官网https://docs.flutter.dev/PLUGINhttps://docs.flutter.dev/packages-and-plugins/developing-packages渲染iOSPlatformViewhttps://docs.flutter.dev/platform-integration/ios/platform-viewsAndroidSurfaceTexture
- Arcgis遥感影像建立镶嵌数据集,加载不显示,采用以下步骤,注意事项
木易GIS
arcpy遥感GISarcgisgis图像处理
Arcgis遥感影像建立镶嵌数据集,加载不显示,采用以下步骤,注意事项:(1)Footprint属性表maxPs改为5000;(2)镶嵌数据集右键属性,maxinumnumberofrasterspermasaic改为1000;(3)右键modify更改生成影像金字塔。然后重新加载图层就能显示了。
- mysql直接在sql中将分组查询出来的多个属性的list,拼接成一个字符串,最后的结果只要一个大的字符串
CURRY30_1
mysqlsql数据库
如果你想要的是将所有分组的结果进一步合并成一个单独的、巨大的字符串(即整个查询结果只返回一个字符串),那么你需要借助子查询或者应用程序层面的逻辑。在纯SQL中,这通常不是直接支持的功能,因为SQL是为返回结果集而设计的,而不是单一字符串。SELECTGROUP_CONCAT(singleResSEPARATOR'\n')ASlastResFROM(selectCONCAT('field1:',yo
- HSM能为区块链、IoT等新兴技术提供怎样的保护?
Anna_Tong
区块链物联网iothsm数据加密
随着区块链和物联网(IoT)技术的快速发展,数据安全已成为最为关键的挑战之一。在这些技术的应用中,涉及到大量的敏感数据和交易信息,因此如何确保数据的机密性、完整性和真实性,成为了亟待解决的问题。硬件安全模块(HSM)作为一种高度安全的加密服务技术,正日益成为保障区块链和IoT技术安全的核心工具。HSM具体能为区块链和IoT做些什么?它又是如何保护这些技术免受安全威胁的呢?HSM在区块链中的应用:密
- 医学类 使用TransUNet、UNet、DeepLabV3+、HRNet、PSPNet 模型对息肉分割数据集进行训练、评估和可视化 EDD2020息肉数据集分割数据集
计算机C9硕士_算法工程师
数据集语义分割医学类数据集语义分割息肉TransUNetUNet
息肉数据集/息肉瘤分割项目解决(已处理好:EDD2020数据集(EndoscopyDiseaseDetectionandSegmentationChallenge)该息肉分割数据集主要包含人体生长的(肠胃)息肉用于器官内部息肉瘤分割,息肉目标检测,息肉定位任务息肉分割是一个重要的医学影像分析任务,特别是在内窥镜检查中。EDD2020数据集是一个很好的起点。我们将使用几种流行的深度学习模型(如Tra
- L8打卡学习笔记
无涯学徒1998
学习笔记支持向量机
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊SVM与集成学习SVMSVM线性模型SVM非线性模型SVM常用参数集成学习随机森林导入数据查看数据信息数据分析随机森林模型预测结果结果分析个人总结SVM超平面:SVM在特征空间中寻找一个能够最大化类别间隔的超平面,称为最大间隔超平面。这个超平面就是将数据集分成不同类别的边界。支持向量:支持向量是离分隔超平面最近的样本点,它们决定了超平面的
- TB抢购购程序
无涯学徒1998
pythonchrome
fromseleniumimportwebdriverimportdatetimeimporttimedeflogin():#打开淘宝首页,扫码登陆淘宝driver.get("https://www.XXXXXX.com")time.sleep(3)ifdriver.find_element_by_xpath("//*[@id='J_SiteNavLogin']/div[1]/div[1]/a[1
- 【学习笔记】昇思25天学习打卡(D14)CV05-SSD目标检测.ipynb
UnseenMe
昇思学习笔记目标检测
SSD目标检测模型简介SSD,全称SingleShotMultiBoxDetector,是WeiLiu在ECCV2016上提出的一种目标检测算法。使用NvidiaTitanX在VOC2007测试集上,SSD对于输入尺寸300x300的网络,达到74.3%mAP(meanAveragePrecision)以及59FPS;对于512x512的网络,达到了76.9%mAP,超越当时最强的FasterRC
- 【后端面试总结】mysql的group by怎么用
ThisIsClark
后端面试总结面试mysql职场和发展
GROUPBY是SQL中的一种用于对结果集进行分组的子句,常与聚合函数(如COUNT()、SUM()、AVG()、MAX()和MIN()等)一起使用。GROUPBY的作用是基于一个或多个列对查询结果进行分组,然后可以对每个分组执行聚合操作。以下是GROUPBY的一些关键点和用法示例:基本用法假设有一个名为employees的表,表结构如下:idnamedepartmentsalary1AliceH
- 安装ubuntu心得(解决黑屏问题)
WindWinsWing
ubuntulinux运维
把安装的全部过程拆解为下面这些步骤,1.准备镜像2.做u盘系统盘3.grub选择启动的位置4.进入到ubuntu界面5.安装,磁盘分区(解决黑屏问题处)6.实际启动运行接下来我将从上面这些方面整理其中的过程和遇到的问题1.准备镜像Ubuntu24.04刚出,忍不住的头铁去尝试,进取后发现生态支持还没有跟上,遇到些软件,包的具体版本使用不了,然后开始上22.04。下载的时候要注意看cpu的架构,由于
- 深度强化学习在高频交易中的动态策略优化与收益提升
二进制独立开发
非纯粹GenAIGenAI与Pythonpython人工智能神经网络自然语言处理生成对抗网络金融数据挖掘
文章目录1.高频交易的核心挑战与强化学习的适应性1.1高频交易中的核心问题1.2强化学习的适配性分析2.基于深度Q网络(DQN)的高频交易策略设计2.1状态空间构建:从LOB到特征工程2.2动作空间与奖励函数设计2.3DQN模型架构与训练优化3.业务视角下的策略优化与风险管理3.1策略有效性验证3.2实时部署与延迟优化3.3合规与伦理考量4.实验:基于NASDAQLOB数据的策略对比4.1数据集与
- PySpark之金融数据分析(Spark RDD、SQL练习题)
唯余木叶下弦声
大数据大数据sparkpysparkpython数据分析sql
目录一、数据来源二、PySparkRDD编程1、查询特定日期的资金流入和流出情况2、活跃用户分析三、PySparkSQL编程1、按城市统计2014年3月1日的平均余额2、统计每个城市总流量前3高的用户四、总结一、数据来源本文使用的数据来源于天池大赛数据集,由蚂蚁金服提供,包含用户基本信息、申购赎回记录、收益率、银行间拆借利率等多个维度,本文通过PySpark实现对该数据集的简单分析。数据来源:天池
- 什么是华强北-ChatGPT4o作答
部分分式
笔记
华强北是中国深圳市的一个著名电子市场,位于福田区。它被誉为全球最大的电子产品交易市场之一,吸引了来自世界各地的商人、消费者和技术爱好者。华强北以其丰富的电子元器件、电子产品以及配件而闻名,是全球电子产业链的重要组成部分。华强北的历史背景华强北的发展历史可以追溯到上世纪80年代,随着深圳成为改革开放的前沿城市,电子产业迅速崛起。最初,华强北只是一个传统的小市场,出售一些基础的电子元件和零配件。然而,
- 第38周:猫狗识别 (Tensorflow实战第八周)
weixin_46620278
tensorflow人工智能python
目录前言一、前期工作1.1设置GPU1.2导入数据输出二、数据预处理2.1加载数据2.2再次检查数据2.3配置数据集2.4可视化数据三、构建VGG-16网络3.1VGG-16网络介绍3.2搭建VGG-16模型四、编译五、训练模型六、模型评估七、预测总结前言本文为中的学习记录博客原作者:说在前面1)本周任务:了解model.train_on_batch()并运用;了解tqdm,并使用tqdm实现可视
- KNOWLEDGE UNLEARNING FOR MITIGATING PRIVACY RISKS IN LANGUAGE MODELS
绒绒毛毛雨
语言模型人工智能自然语言处理
文章目录摘要1引言2相关工作2.1语言模型的隐私方法2.2机器去学习2.3语言模型中的记忆3语言模型中的知识去学习3.1方法论3.2量化语言模型的隐私风险4实验4.1模型、数据集和配置4.2主要实验4.3知识去学习的分析5结论摘要预训练语言模型(LMs)在初始预训练过程中记忆了大量知识,包括可能侵犯个人隐私和身份的信息。以往针对语言模型隐私问题的研究主要集中在数据预处理和差分隐私方法上,这两者都需
- 数据挖掘中的关联规则--面向频繁项集的A-Priori算法
绒绒毛毛雨
大数据挖掘算法数据挖掘python
文章目录一、频繁项集与关联规则学习1.实体与关系2.支持度与频繁项集3.关联规则二、寻找频繁项集1.频繁项集发现的挑战三角矩阵项对计数值的三元组存储方法2.频繁项集的单调性3.面向项对的A-Priori算法4.PCY算法哈希表创建第二遍扫描5、多阶段算法6、多哈希算法7、随机化算法8、SON算法9、Toivonen算法三、频繁项集小实践:消费者购买记录模拟数据示例具体问题分析一、频繁项集与关联规则
- LGBMRegressor CatBoostRegressor XGBRegressor回归
兔兔爱学习兔兔爱学习
竞赛代码实践回归数据挖掘
importpandasaspd#导入csv文件的库importnumpyasnp#进行矩阵运算的库importpolarsaspl#和pandas类似,但是处理大型数据集有更好的性能.#用于对一组元素计数,一个存在默认值的字典,访问不存在的值时抛出的是默认值fromcollectionsimportCounter,defaultdictimportre#用于正则表达式提取fromscipy.st
- 分享wind量化交易平台接口编程代码
「已注销」
python开发语言
相信做股票投资的的人对于wind应该很熟悉,它是一个比较高端的金融数据服务商,有很多人做数据分析之前,一定都需要到wind上看看相关资料,但是wind上面的信息非常多,如果可以通过量化交易接口进行筛选,操作起来就会方面很多了,今日我们就来分享一组wind量化交易平台接口的编程代码。importpandasaspdfromWindPyimport*fromdatetimeimport*importt
- 证券量化交易选择合适的编程语言
jcsx
量化numpypandaspyqtservletjavascript
在证券量化交易中,选择合适的编程语言至关重要,因为它直接影响到开发效率、运行速度和策略的灵活性。常用的编程语言有几个,它们各自有不同的优势和应用场景。以下是一些在量化交易中常用的编程语言:PythonPython是目前量化交易中最流行的编程语言之一,特别是在金融数据分析和模型开发中,广泛被使用。Python的流行主要有以下原因:数据处理能力:Python有非常强大的数据处理库,如pandas(数据
- 【Python篇】从零到精通:全面分析Scikit-Learn在机器学习中的绝妙应用
半截诗
Pythonpython机器学习scikit-learn人工智能深度学习数据分析随机森林
文章目录从零到精通:全面揭秘Scikit-Learn在机器学习中的绝妙应用前言第一部分:深入了解Scikit-Learn的基础知识1.什么是Scikit-Learn?2.安装Scikit-Learn3.Scikit-Learn中的基本构件4.数据集的加载与探索5.数据预处理标准化数据6.构建和训练机器学习模型构建逻辑回归模型7.模型评估与验证混淆矩阵第二部分:深入理解Scikit-Learn的高级
- 【docker了解】如何将x86镜像转换为适用于Jetson的ARM镜像
Eternal-Student
Dockerdockerarm开发容器
将x86架构的Docker镜像转换为适用于ARM架构的Jetson设备的镜像是一个复杂的过程,因为这两种架构的指令集完全不同。不过,有一些方法可以尝试实现这一转换。使用QEMU进行仿真在x86机器上,你可以使用QEMU来模拟ARM环境,从而运行ARM镜像。但是,这种方法主要用于测试和开发,而不是生产环境。以下是基本步骤:安装QEMU:在x86机器上安装QEMU,它是一个开源的机器模拟器和虚拟化器。
- GOCI-L2可以指定变量和日期批量下载
一休哥※
数据集下载windows数据库数据集GOCI
下载数据集运行批量下载脚本按需修改代码注意修改时间修改需要的变量zip下载结果实现批量下载GOCI-II数据集标记 GOCI-II数据集下载脚本运行批量下载脚本数据集网站:https://kosc.kiost.ac.kr/gociSearch/list.nm?menuCd=11&lang=ko&url=gociSearch&dirString=/COMS/GOCI/L2/有批量下载数据集的需求,
- 【Leetcode 每日一题】2412. 完成所有交易的初始最少钱数
冠位观测者
LeetcodeDailyleetcode算法数据结构
问题背景给你一个下标从000开始的二维整数数组transactionstransactionstransactions,其中transactions[i]=[costi,cashbacki]transactions[i]=[cost_i,cashback_i]transactions[i]=[costi,cashbacki]。数组描述了若干笔交易。其中每笔交易必须以某种顺序恰好完成一次。在任意一个
- 使用YOLOv8训练一个无人机(UAV)检测模型,深度学习目标检测中_并开发一个完整的系统 yolov8来训练无人机数据集并检测无人机
QQ_767172261
无人及视角YOLO无人机深度学习
使用YOLOv8训练一个无人机(UAV)检测模型,深度学习目标检测中_并开发一个完整的系统yolov8来训练无人机数据集并检测无人机无人机数据集,yolo格式种类为uav,一共近5w张图片,如何用yolov8代码训练无人机检测数据集文章目录以下文章及内容仅供参考。1.环境部署2.数据预处理数据集准备划分数据集3.模型定义4.训练模型5.评估模型6.结果分析与可视化7.集成与部署PyQt6GUI(`
- ubuntu电脑调用摄像头拍摄照片
山山而川_R
Drugsopencv计算机视觉人工智能
一、1、先装环境condacreate-ntextpython==3.8-ycondaactivatetext2、pipinstallopencv-python-ihttps://pypi.tuna.tsinghua.edu.cn/simple1、连接摄像头拍摄收集数据集capture_image5.pyimportcv2ascvimportosimportdatetimeimportnumpya
- 软件工程之信息系统集成
我叫吴桂鑫
计算机基础知识软件工程信息系统集成
现在的软件开发工作大多数是集成,所有部分都从头开发效率会很低,问题也会更多,成本也会更高。系统集成就是将各类资源有机、高效地整合到一起,形成一个完整的系统。信息系统集成包括网络集成、数据集成和应用集成等。网络集成、数据集成和应用集成分别用于解决系统的互连性、互通性和互操作性。(1)网络集成(企业局域网)重点是系统中异构网络的互连。(2)数据集成(大数据)重点是系统中异构数据集的互通使用和统一管理。
- 全面解析物联网信息安全知识体系
无声远望
本文还有配套的精品资源,点击获取简介:本资料集详细介绍物联网信息安全的多个重要方面,包括基础概念、数学基础、数据安全与隐私保护、集成安全技术、安全分析、防护策略和身份认证。从基本的物联网安全概念到深度探讨密码学基础,再到数据保护技术,再到全面的系统安全设计,安全分析,防御措施以及身份验证技术,这些内容将为研究者、开发者和管理者提供物联网安全的全面视角。1.物联网信息安全基础概念在现代技术不断发展的
- 情感分析常见算法与模型及实现步骤
计算机软件程序设计
知识科普算法情感分析机器学习
【1】常见算法与模型情感分析(SentimentAnalysis)是一种自然语言处理(NLP)技术,用于识别和提取文本中的主观信息,如情绪、态度和意见。常见的算法和模型包括以下几种:传统机器学习方法朴素贝叶斯(NaiveBayes)基于贝叶斯定理,假设特征之间相互独立。计算简单,适用于大规模数据集。常用于文本分类任务。支持向量机(SVM)通过寻找最优超平面来划分不同的类别。在高维空间中表现良好,适
- 大模型GUI系列论文阅读 DAY4:《PREDICT: Multi-Agent-based Debate Simulation for Generalized Hate Speech Detecti》
feifeikon
论文阅读
摘要虽然已经提出了一些公共基准用于训练仇恨言论检测模型,但这些基准之间的标注标准差异为模型的泛化学习带来了挑战,限制了其适用性。先前的研究提出了通过数据整合或扩充来泛化模型的方法,但在克服数据集之间的标注标准差异方面仍然存在局限性。为了解决这些挑战,我们提出了PREDICT,一种基于多代理(multi-agent)概念的仇恨言论检测新框架。PREDICT包括两个阶段:(1)PRE(基于视角的推理)
- 2025-1-21-sklearn学习(43) 使用 scikit-learn 介绍机器学习 楼上阑干横斗柄,寒露人远鸡相应。
汤姆和佩琦
sklearn机器学习sklearn学习python人工智能scikit-learn
文章目录sklearn学习(43)使用scikit-learn介绍机器学习43.1机器学习:问题设置43.2加载示例数据集43.3学习和预测43.4模型持久化43.4规定43.4.1类型转换43.4.2再次训练和更新参数43.4.3多分类与多标签拟合sklearn学习(43)使用scikit-learn介绍机器学习文章参考网站:https://sklearn.apachecn.org/和https
- scala的option和some
矮蛋蛋
编程scala
原文地址:
http://blog.sina.com.cn/s/blog_68af3f090100qkt8.html
对于学习 Scala 的 Java™ 开发人员来说,对象是一个比较自然、简单的入口点。在 本系列 前几期文章中,我介绍了 Scala 中一些面向对象的编程方法,这些方法实际上与 Java 编程的区别不是很大。我还向您展示了 Scala 如何重新应用传统的面向对象概念,找到其缺点
- NullPointerException
Cb123456
androidBaseAdapter
java.lang.NullPointerException: Attempt to invoke virtual method 'int android.view.View.getImportantForAccessibility()' on a null object reference
出现以上异常.然后就在baidu上
- PHP使用文件和目录
天子之骄
php文件和目录读取和写入php验证文件php锁定文件
PHP使用文件和目录
1.使用include()包含文件
(1):使用include()从一个被包含文档返回一个值
(2):在控制结构中使用include()
include_once()函数需要一个包含文件的路径,此外,第一次调用它的情况和include()一样,如果在脚本执行中再次对同一个文件调用,那么这个文件不会再次包含。
在php.ini文件中设置
- SQL SELECT DISTINCT 语句
何必如此
sql
SELECT DISTINCT 语句用于返回唯一不同的值。
SQL SELECT DISTINCT 语句
在表中,一个列可能会包含多个重复值,有时您也许希望仅仅列出不同(distinct)的值。
DISTINCT 关键词用于返回唯一不同的值。
SQL SELECT DISTINCT 语法
SELECT DISTINCT column_name,column_name
F
- java冒泡排序
3213213333332132
java冒泡排序
package com.algorithm;
/**
* @Description 冒泡
* @author FuJianyong
* 2015-1-22上午09:58:39
*/
public class MaoPao {
public static void main(String[] args) {
int[] mao = {17,50,26,18,9,10
- struts2.18 +json,struts2-json-plugin-2.1.8.1.jar配置及问题!
7454103
DAOspringAjaxjsonqq
struts2.18 出来有段时间了! (貌似是 稳定版)
闲时研究下下! 貌似 sruts2 搭配 json 做 ajax 很吃香!
实践了下下! 不当之处请绕过! 呵呵
网上一大堆 struts2+json 不过大多的json 插件 都是 jsonplugin.34.jar
strut
- struts2 数据标签说明
darkranger
jspbeanstrutsservletScheme
数据标签主要用于提供各种数据访问相关的功能,包括显示一个Action里的属性,以及生成国际化输出等功能
数据标签主要包括:
action :该标签用于在JSP页面中直接调用一个Action,通过指定executeResult参数,还可将该Action的处理结果包含到本页面来。
bean :该标签用于创建一个javabean实例。如果指定了id属性,则可以将创建的javabean实例放入Sta
- 链表.简单的链表节点构建
aijuans
编程技巧
/*编程环境WIN-TC*/ #include "stdio.h" #include "conio.h"
#define NODE(name, key_word, help) \ Node name[1]={{NULL, NULL, NULL, key_word, help}}
typedef struct node { &nbs
- tomcat下jndi的三种配置方式
avords
tomcat
jndi(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。命名服务将名称和对象联系起来,使得我们可以用名称
访问对象。目录服务是一种命名服务,在这种服务里,对象不但有名称,还有属性。
tomcat配置
- 关于敏捷的一些想法
houxinyou
敏捷
从网上看到这样一句话:“敏捷开发的最重要目标就是:满足用户多变的需求,说白了就是最大程度的让客户满意。”
感觉表达的不太清楚。
感觉容易被人误解的地方主要在“用户多变的需求”上。
第一种多变,实际上就是没有从根本上了解了用户的需求。用户的需求实际是稳定的,只是比较多,也比较混乱,用户一般只能了解自己的那一小部分,所以没有用户能清楚的表达出整体需求。而由于各种条件的,用户表达自己那一部分时也有
- 富养还是穷养,决定孩子的一生
bijian1013
教育人生
是什么决定孩子未来物质能否丰盛?为什么说寒门很难出贵子,三代才能出贵族?真的是父母必须有钱,才能大概率保证孩子未来富有吗?-----作者:@李雪爱与自由
事实并非由物质决定,而是由心灵决定。一朋友富有而且修养气质很好,兄弟姐妹也都如此。她的童年时代,物质上大家都很贫乏,但妈妈总是保持生活中的美感,时不时给孩子们带回一些美好小玩意,从来不对孩子传递生活艰辛、金钱来之不易、要懂得珍惜
- oracle 日期时间格式转化
征客丶
oracle
oracle 系统时间有 SYSDATE 与 SYSTIMESTAMP;
SYSDATE:不支持毫秒,取的是系统时间;
SYSTIMESTAMP:支持毫秒,日期,时间是给时区转换的,秒和毫秒是取的系统的。
日期转字符窜:
一、不取毫秒:
TO_CHAR(SYSDATE, 'YYYY-MM-DD HH24:MI:SS')
简要说明,
YYYY 年
MM 月
- 【Scala六】分析Spark源代码总结的Scala语法四
bit1129
scala
1. apply语法
FileShuffleBlockManager中定义的类ShuffleFileGroup,定义:
private class ShuffleFileGroup(val shuffleId: Int, val fileId: Int, val files: Array[File]) {
...
def apply(bucketId
- Erlang中有意思的bug
bookjovi
erlang
代码中常有一些很搞笑的bug,如下面的一行代码被调用两次(Erlang beam)
commit f667e4a47b07b07ed035073b94d699ff5fe0ba9b
Author: Jovi Zhang <
[email protected]>
Date: Fri Dec 2 16:19:22 2011 +0100
erts:
- 移位打印10进制数转16进制-2008-08-18
ljy325
java基础
/**
* Description 移位打印10进制的16进制形式
* Creation Date 15-08-2008 9:00
* @author 卢俊宇
* @version 1.0
*
*/
public class PrintHex {
// 备选字符
static final char di
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 利用cmd命令将.class文件打包成jar
chenyu19891124
cmdjar
cmd命令打jar是如下实现:
在运行里输入cmd,利用cmd命令进入到本地的工作盘符。(如我的是D盘下的文件有此路径 D:\workspace\prpall\WEB-INF\classes)
现在是想把D:\workspace\prpall\WEB-INF\classes路径下所有的文件打包成prpall.jar。然后继续如下操作:
cd D: 回车
cd workspace/prpal
- [原创]JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
comsci
eclipse设计模式算法工作swing
JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
&nb
- SecureCRT右键粘贴的设置
daizj
secureCRT右键粘贴
一般都习惯鼠标右键自动粘贴的功能,对于SecureCRT6.7.5 ,这个功能也已经是默认配置了。
老版本的SecureCRT其实也有这个功能,只是不是默认设置,很多人不知道罢了。
菜单:
Options->Global Options ...->Terminal
右边有个Mouse的选项块。
Copy on Select
Paste on Right/Middle
- Linux 软链接和硬链接
dongwei_6688
linux
1.Linux链接概念Linux链接分两种,一种被称为硬链接(Hard Link),另一种被称为符号链接(Symbolic Link)。默认情况下,ln命令产生硬链接。
【硬连接】硬连接指通过索引节点来进行连接。在Linux的文件系统中,保存在磁盘分区中的文件不管是什么类型都给它分配一个编号,称为索引节点号(Inode Index)。在Linux中,多个文件名指向同一索引节点是存在的。一般这种连
- DIV底部自适应
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- Centos6.5使用yum安装mysql——快速上手必备
dcj3sjt126com
mysql
第1步、yum安装mysql
[root@stonex ~]# yum -y install mysql-server
安装结果:
Installed:
mysql-server.x86_64 0:5.1.73-3.el6_5 &nb
- 如何调试JDK源码
frank1234
jdk
相信各位小伙伴们跟我一样,想通过JDK源码来学习Java,比如collections包,java.util.concurrent包。
可惜的是sun提供的jdk并不能查看运行中的局部变量,需要重新编译一下rt.jar。
下面是编译jdk的具体步骤:
1.把C:\java\jdk1.6.0_26\sr
- Maximal Rectangle
hcx2013
max
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.
public class Solution {
public int maximalRectangle(char[][] matrix)
- Spring MVC测试框架详解——服务端测试
jinnianshilongnian
spring mvc test
随着RESTful Web Service的流行,测试对外的Service是否满足期望也变的必要的。从Spring 3.2开始Spring了Spring Web测试框架,如果版本低于3.2,请使用spring-test-mvc项目(合并到spring3.2中了)。
Spring MVC测试框架提供了对服务器端和客户端(基于RestTemplate的客户端)提供了支持。
&nbs
- Linux64位操作系统(CentOS6.6)上如何编译hadoop2.4.0
liyong0802
hadoop
一、准备编译软件
1.在官网下载jdk1.7、maven3.2.1、ant1.9.4,解压设置好环境变量就可以用。
环境变量设置如下:
(1)执行vim /etc/profile
(2)在文件尾部加入:
export JAVA_HOME=/home/spark/jdk1.7
export MAVEN_HOME=/ho
- StatusBar 字体白色
pangyulei
status
[[UIApplication sharedApplication] setStatusBarStyle:UIStatusBarStyleLightContent];
/*you'll also need to set UIViewControllerBasedStatusBarAppearance to NO in the plist file if you use this method
- 如何分析Java虚拟机死锁
sesame
javathreadoracle虚拟机jdbc
英文资料:
Thread Dump and Concurrency Locks
Thread dumps are very useful for diagnosing synchronization related problems such as deadlocks on object monitors. Ctrl-\ on Solaris/Linux or Ctrl-B
- 位运算简介及实用技巧(一):基础篇
tw_wangzhengquan
位运算
http://www.matrix67.com/blog/archives/263
去年年底写的关于位运算的日志是这个Blog里少数大受欢迎的文章之一,很多人都希望我能不断完善那篇文章。后来我看到了不少其它的资料,学习到了更多关于位运算的知识,有了重新整理位运算技巧的想法。从今天起我就开始写这一系列位运算讲解文章,与其说是原来那篇文章的follow-up,不如说是一个r
- jsearch的索引文件结构
yangshangchuan
搜索引擎jsearch全文检索信息检索word分词
jsearch是一个高性能的全文检索工具包,基于倒排索引,基于java8,类似于lucene,但更轻量级。
jsearch的索引文件结构定义如下:
1、一个词的索引由=分割的三部分组成: 第一部分是词 第二部分是这个词在多少