近期算法课上,刚刚学习了 关于最近点对的相关知识,目前只是参看了大牛的思想 ,写了个最基本的裸最近点对。下面是两种方式
蛮力法:
#include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> using namespace std; struct p{ int x; int y; }; double ClosestPoint1(int n,p a[],int &index1,int &index2){ double d; double Dist=10000; int i,j; for(i=0;i<n-1;i++) for(j=i+1;j<=n-1;j++){ d=(a[i].x-a[j].x)*(a[i].x-a[j].x)+(a[i].y-a[j].y)*(a[i].y-a[j].y); if(Dist>=d){ Dist=d; index1=i; index2=j; } } //printf("%d %d\n",i,j); return Dist; } int main() { int n,t,j; p a[100]; scanf("%d",&n); for(int i=0;i<n;i++){ scanf("%d%d",&a[i].x,&a[i].y); } int d=ClosestPoint1(n,a,t,j); printf("%d\n",d); return 0; } }分治法:
const int N = 100005; const double MAX = 10e100, eps = 0.00001; struct Point { double x, y; int index; }; Point a[N], b[N], c[N]; double closest(Point *, Point *, Point *, int, int); double dis(Point, Point); int cmp_x(const void *, const void*); int cmp_y(const void *, const void*); int merge(Point *, Point *, int, int, int); inline double min(double, double); int main(){ int n, i; double d; scanf("%d", &n); while (n) { for (i = 0; i < n; i++) scanf("%lf%lf", &(a[i].x), &(a[i].y)); qsort(a, n, sizeof(a[0]), cmp_x); for (i = 0; i < n; i++) a[i].index = i; memcpy(b, a, n *sizeof(a[0])); qsort(b, n, sizeof(b[0]), cmp_y); d = closest(a, b, c, 0, n - 1); printf("%.2lf\n", d); } return 0; } double closest(Point a[],Point b[],Point c[],int p,int q){ if (q - p == 1) return dis(a[p], a[q]); if (q - p == 2) { double x1 = dis(a[p], a[q]); double x2 = dis(a[p + 1], a[q]); double x3 = dis(a[p], a[p + 1]); if (x1 < x2 && x1 < x3) return x1; else if (x2 < x3) return x2; else return x3; } int i, j, k, m = (p + q) / 2; double d1, d2; for (i = p, j = p, k = m + 1; i <= q; i++) if (b[i].index <= m) c[j++] = b[i]; //数组c左半部保存划分后左部的点, 且对y是有序的. else c[k++] = b[i]; d1 = closest(a, c, b, p, m); d2 = closest(a, c, b, m + 1, q); double dm = min(d1, d2); //数组c左右部分分别是对y坐标有序的, 将其合并到b. merge(b, c, p, m, q); for (i = p, k = p; i <= q; i++) if (fabs(b[i].x - b[m].x) < dm) c[k++] = b[i]; //找出离划分基准左右不超过dm的部分, 且仍然对y坐标有序. for (i = p; i < k; i++) for (j = i + 1; j < k && c[j].y - c[i].y < dm; j++){ double temp = dis(c[i], c[j]); if (temp < dm) dm = temp; } return dm; } double dis(Point p, Point q){ double x1 = p.x - q.x, y1 = p.y - q.y; return sqrt(x1 *x1 + y1 * y1); } int merge(Point p[], Point q[], int s, int m, int t){ int i, j, k; for (i=s, j=m+1, k = s; i <= m && j <= t;) { if (q[i].y > q[j].y) p[k++] = q[j], j++; else p[k++] = q[i], i++; } while (i <= m) p[k++] = q[i++]; while (j <= t) p[k++] = q[j++]; memcpy(q + s, p + s, (t - s + 1) *sizeof(p[0])); return 0; } int cmp_x(const void *p, const void *q){ double temp = ((Point*)p)->x - ((Point*)q)->x; if (temp > 0) return 1; else if (fabs(temp) < eps) return 0; else return - 1; } int cmp_y(const void *p, const void *q){ double temp = ((Point*)p)->y - ((Point*)q)->y; if (temp > 0) return 1; else if (fabs(temp) < eps) return 0; else return - 1; } inline double min(double p, double q) { return (p > q) ? (q): (p); }