第三十九章续:区间最值RMQ问题

问题描述:

找出数组A[],任意区间[i,j]的最小值


/*
RMQ问题
区间最值查询
*/
#include <iostream>
using namespace std;
#define MAX 100

//方法1
//M[i][j]表示区间i,j最值的索引
//构造M复杂度O(n^2)
void RMQ1(int M[][MAX],int A[],int N){
	int i, j;  
    for (i =0; i < N; i++)  
        M[i][i] = i;  
  
    for (i = 0; i < N; i++)  
        for (j = i + 1; j < N; j++)  
            //若前者小于后者,则把后者的索引值付给M[i][j]  
            if (A[M[i][j - 1]] < A[j])  
                M[i][j] = M[i][j - 1];  
            //否则前者的索引值付给M[i][j]  
            else  
                M[i][j] = j;  
}
/*
方法2:
ST算法
M[ i ][ j ] 是以i 开始,长度为 2^j 的子数组的最小值的索引
分两个区间,M[i][j]为这两个区间最值的索引
则M[i][j]={M[i][j-1],M[i+2^(j-1)+1][j-1]}
构造M时间复杂度O(nlogn)
如何求区间的最值RMQ[i][j]?
设k=log(j-i+1)
RMQ[i][j]={M[i][k],M[j-2^k+1][k]}
时间复杂度O(1)
*/
void RMQ2(int M[][MAX], int A[], int N)  
{  
    int i, j;  
    //initialize M for the intervals with length 1  
  
    for (i = 0; i < N; i++)  
        M[i][0] = i;  
  
    //compute values from smaller to bigger intervals  
    for (j = 1; 1 << j <= N; j++)  
        for (i = 0; i + (1 << j) - 1 < N; i++)  
            if (A[M[i][j - 1]] < A[M[i + (1 << (j - 1))][j - 1]])  
                M[i][j] = M[i][j - 1];  
            else  
                M[i][j] = M[i + (1 << (j - 1))][j - 1];  
}    

/*
方法3:
线段树
这里M[i]保存结点i区间最小值的位置。初始时M的所有元素为-1
构造M,O(N)
查询O(logn)
*/
void initialize(int node, int b, int e, int M[], int A[])  
{  
    if (b == e){
        M[node] = b;  
		return;
	}
    //compute the values in the left and right subtrees  
    initialize(2 * node, b, (b + e) / 2, M, A);  
    initialize(2 * node + 1, (b + e) / 2 + 1, e, M, A);  
  
    //search for the minimum value in the first and  
    //second half of the interval  
    if (A[M[2 * node]] <= A[M[2 * node + 1]])  
        M[node] = M[2 * node];  
    else  
        M[node] = M[2 * node + 1];  
}  
int query(int node, int b, int e, int M[], int A[], int i, int j)  
{  
    int p1, p2;  
    //if the current interval doesn't intersect  
    //the query interval return -1  
    if (i > e || j < b)  
        return -1;  
  
    //if the current interval is included in  
    //the query interval return M[node]  
    if (b >= i && e <= j)  
        return M[node];  
  
    //compute the minimum position in the  
    //left and right part of the interval  
    p1 = query(2 * node, b, (b + e) / 2, M, A, i, j);  
    p2 = query(2 * node + 1, (b + e) / 2 + 1, e, M, A, i, j);  
  
    //return the position where the overall  
    //minimum is  
    if (p1 == -1)  
        return M[node] = p2;  
    if (p2 == -1)  
        return M[node] = p1;  
    if (A[p1] <= A[p2])  
        return M[node] = p1;  
    return M[node] = p2;  
}  
int main()
{
	int A[]={1,2,3,4,5,6,7,8,9,0};
	int M[MAX][MAX];

	//ST算法测试
	RMQ2(M,A,10);
	int k=log(9+1);
	cout<<k<<endl;
	cout<<A[M[0][k]]<<endl;
	cout<<A[M[9-(1<<k)+1][k]]<<endl;
	//end
	
	//线段树测试
	int N[MAX];
	memset(N,-1,sizeof(N));//初始化数组为-1
	initialize(1,0,10-1,N,A);
	int index=query(1,0,9,N,A,1,8);
	cout<<A[index]<<endl;

	return 0;
}


你可能感兴趣的:(程序员之路)