Combination Sum
Mar 7 '12
5736 / 16047
Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, � , ak) must be in non-descending order. (ie, a1 ? a2 ? � ? ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set 2,3,6,7
and target 7
,
A solution set is: [7]
[2, 2, 3]
class Solution { public: vector<vector<int> > res; int n; vector<vector<int> > combinationSum(vector<int> &candidates, int target) { vector<int> r; res.clear(); n = candidates.size(); sort(candidates.begin(), candidates.end()); gen(r,0,0, candidates, target); return res; } void gen(vector<int> &r,int sum,int l, const vector<int>& can, int tar) { if (sum == tar) { res.push_back(r); return; } if (sum > tar) return ; for (int i = l; i < n; i++) { r.push_back(can[i]); sum += can[i]; gen(r, sum,i, can, tar); sum -= can[i]; r.pop_back(); } } };
@2013-10-05
class Solution { public: vector<vector<int> > combinationSum(vector<int> &candidates, int target) { vector<vector<int> > res; if (candidates.size() == 0) return res; vector<int> v; sort(candidates.begin(), candidates.end()); gen(candidates, res, v, target, 0); return res; } void gen(vector<int>& can, vector<vector<int> >& res, vector<int>& v, int left, int cur) { if (left == 0) { res.push_back(v); return; } if (left < 0 || cur >= can.size()) return; int next = cur + 1; while (next < can.size() && can[next] == can[cur]) next++; int t = left, cnt = 0; gen(can, res, v, t, next); while (t > 0) { v.push_back(can[cur]); t -= can[cur]; cnt ++; gen(can, res, v, t, next); } while (cnt-- > 0) v.pop_back(); } };
Combination Sum II
Mar 7 '12
4451 / 13371
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
Each number in C may only be used once in the combination.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, � , ak) must be in non-descending order. (ie, a1 ? a2 ? � ? ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set 10,1,2,7,6,1,5
and target 8
,
A solution set is: [1, 7]
[1, 2, 5]
[2, 6]
[1, 1, 6]
class Solution { public: vector<vector<int> > res; int n; vector<vector<int> > combinationSum2(vector<int> &candidates, int target) { vector<int> r; res.clear(); n = candidates.size(); sort(candidates.begin(), candidates.end()); gen(r,0,0, candidates, target); return res; } void gen(vector<int> &r,int sum,int l, const vector<int>& can, int tar) { if (sum == tar) { res.push_back(r); return; } if (sum > tar) return ; for (int i = l; i < n; i++) { if (i > l && can[i] == can[i-1]) {continue;} r.push_back(can[i]); sum += can[i]; gen(r, sum, i+1, can, tar); sum -= can[i]; r.pop_back(); } } };
@2013-10-05
class Solution { public: vector<vector<int> > combinationSum2(vector<int> &num, int target) { vector<vector<int> > res; if (num.size() == 0) return res; vector<int> v; sort(num.begin(), num.end()); gen(num, target, res, v, 0); return res; } void gen(const vector<int> &a, int tar, vector<vector<int> >& res, vector<int>& v, int cur) { if (tar == 0) { res.push_back(v); return; } if (tar < 0 || cur >= a.size()) return; int next = cur + 1; while (next < a.size() && a[next] == a[cur]) next++; gen(a,tar, res, v, next); if (a[cur] <= tar) { v.push_back(a[cur]); gen(a, tar - a[cur], res, v, cur + 1); v.pop_back(); } } };