下面,我们只涉及MapReduce 1,而不涉及YARN。
当我们在写MapReduce程序的时候,通常,在main函数里,我们会像下面这样做。建立一个Job对象,设置它的JobName,然后配置输入输出路径,设置我们的Mapper类和Reducer类,设置InputFormat和正确的输出类型等等。然后我们会使用job.waitForCompletion()提交到JobTracker,等待job运行并返回,这就是一般的Job设置过程。JobTracker会初始化这个Job,获取输入分片,然后将一个一个的task任务分配给TaskTrackers执行。TaskTracker获取task是通过心跳的返回值得到的,然后TaskTracker就会为收到的task启动一个JVM来运行。
Configuration conf = getConf(); Job job = new Job(conf, "SelectGradeDriver"); job.setJarByClass(SelectGradeDriver.class); Path in = new Path(args[0]); Path out = new Path(args[1]); FileInputFormat.setInputPaths(job, in); FileOutputFormat.setOutputPath(job, out); job.setMapperClass(SelectGradeMapper.class); job.setReducerClass(SelectGradeReducer.class); job.setInputFormatClass(TextInputFormat.class); job.setOutputFormatClass(TextOutputFormat.class); job.setMapOutputKeyClass(InstituteAndGradeWritable.class); job.setMapOutputValueClass(Text.class); job.setOutputKeyClass(InstituteAndGradeWritable.class); job.setOutputValueClass(Text.class); System.exit(job.waitForCompletion(true)? 0 : 1);
public class Job extends JobContext { public static enum JobState {DEFINE, RUNNING}; private JobState state = JobState.DEFINE; private JobClient jobClient; private RunningJob info; public float setupProgress() throws IOException { ensureState(JobState.RUNNING); return info.setupProgress(); } public float mapProgress() throws IOException { ensureState(JobState.RUNNING); return info.mapProgress(); } public float reduceProgress() throws IOException { ensureState(JobState.RUNNING); return info.reduceProgress(); } public boolean isComplete() throws IOException { ensureState(JobState.RUNNING); return info.isComplete(); } public boolean isSuccessful() throws IOException { ensureState(JobState.RUNNING); return info.isSuccessful(); } public void killJob() throws IOException { ensureState(JobState.RUNNING); info.killJob(); } public TaskCompletionEvent[] getTaskCompletionEvents(int startFrom ) throws IOException { ensureState(JobState.RUNNING); return info.getTaskCompletionEvents(startFrom); } public void killTask(TaskAttemptID taskId) throws IOException { ensureState(JobState.RUNNING); info.killTask(org.apache.hadoop.mapred.TaskAttemptID.downgrade(taskId), false); } public void failTask(TaskAttemptID taskId) throws IOException { ensureState(JobState.RUNNING); info.killTask(org.apache.hadoop.mapred.TaskAttemptID.downgrade(taskId), true); } public Counters getCounters() throws IOException { ensureState(JobState.RUNNING); return new Counters(info.getCounters()); } public void submit() throws IOException, InterruptedException, ClassNotFoundException { ensureState(JobState.DEFINE); setUseNewAPI(); // Connect to the JobTracker and submit the job connect(); info = jobClient.submitJobInternal(conf); super.setJobID(info.getID()); state = JobState.RUNNING; } private void connect() throws IOException, InterruptedException { ugi.doAs(new PrivilegedExceptionAction<Object>() { public Object run() throws IOException { jobClient = new JobClient((JobConf) getConfiguration()); return null; } }); } public boolean waitForCompletion(boolean verbose ) throws IOException, InterruptedException, ClassNotFoundException { if (state == JobState.DEFINE) { submit(); } if (verbose) { jobClient.monitorAndPrintJob(conf, info); } else { info.waitForCompletion(); } return isSuccessful(); } //lots of setters and others }
一个Job对象有两种状态,DEFINE和RUNNING,Job对象被创建时的状态时DEFINE,当且仅当Job对象处于DEFINE状态,才可以用来设置作业的一些配置,如Reduce task的数量、InputFormat类、工作的Mapper类,Partitioner类等等,这些设置是通过设置配置信息conf来实现的;当作业通过submit()被提交,就会将这个Job对象的状态设置为RUNNING,这时候作业以及提交了,就不能再设置上面那些参数了,作业处于调度运行阶段。处于RUNNING状态的作业我们可以获取作业、map task和reduce task的进度,通过代码中的*Progress()获得,这些函数是通过info来获取的,info是RunningJob对象,它是实际在运行的作业的一组获取作业情况的接口,如Progress。
在waitForCompletion()中,首先用submit()提交作业,然后等待info.waitForCompletion()返回作业执行完毕。verbose参数用来决定是否将运行进度等信息输出给用户。submit()首先会检查是否正确使用了new API,这通过setUseNewAPI()检查旧版本的属性是否被设置来实现的[设置是否使用newAPI是因为执行Task时要根据使用的API版本来执行不同版本的MapReduce,在后面讲MapTask时会说到],接着就connect()连接JobTracker并提交。实际提交作业的是一个JobClient对象,提交作业后返回一个RunningJob对象,这个对象可以跟踪作业的进度以及含有由JobTracker设置的作业ID。
getCounter()函数是用来返回这个作业的计数器列表的,计数器被用来收集作业的统计信息,比如失败的map task数量,reduce输出的记录数等等。它包括内置计数器和用户定义的计数器,用户自定义的计数器可以用来收集用户需要的特定信息。计数器首先被每个task定期传输到TaskTracker,最后TaskTracker再传到JobTracker收集起来。这就意味着,计数器是全局的。
关于Counter相关的类,为了保持篇幅简短,放在下一篇讲。