poj 3259 Wormholes

Wormholes
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 31422   Accepted: 11429

Description

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..NM (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input

Line 1: A single integer,  FF farm descriptions follow. 
Line 1 of each farm: Three space-separated integers respectively:  NM, and  W 
Lines 2.. M+1 of each farm: Three space-separated numbers ( SET) that describe, respectively: a bidirectional path between  S and  E that requires  T seconds to traverse. Two fields might be connected by more than one path. 
Lines  M+2.. M+ W+1 of each farm: Three space-separated numbers ( SET) that describe, respectively: A one way path from  S to  E that also moves the traveler back  T seconds.

Output

Lines 1.. F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).

Sample Input

2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8

Sample Output

NO
YES

Hint

For farm 1, FJ cannot travel back in time. 
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.

这题就是判存不存在负圈,可以用bellman-ford或者spfa,这里为了练习spfa。注意一下,在题目没有说明图连通的情况下,必须对每个点进行spfa判负圈,实际上可以优化,即每做一次spfa,dist!=inf,这些点不用继续spfa了。可以证明,如果这些点包含负圈,那么在这次spfa中就可以判出存在负圈,既然还要往下做,显然不存在负圈。

代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#define Maxe 6000
#define Maxv 510
using namespace std;

struct line{
    int to,w;
    line(){}
    line(int t,int ww):to(t),w(ww){}
}edge[Maxe];
int head[Maxv],nxt[Maxe],f[Maxv];
int q[Maxv],dist[Maxv],vis[Maxv],cnt[Maxv];
const int inf=1<<30;
bool spfa(int u,int n){
    memset(vis,0,sizeof vis);
    memset(cnt,0,sizeof cnt);
    for(int i=1;i<=n;i++) dist[i]=inf;
    dist[u]=0,cnt[u]++;
    int s=0,e;
    q[e=1]=u;
    bool flag=true;
    while(s!=e&&flag){
        int v=q[s=(s+1)%Maxv];
        vis[v]=0;
        for(int i=head[v];i!=-1;i=nxt[i]){
            int r=edge[i].to,w=edge[i].w;
            if(dist[v]+w<dist[r]){
                dist[r]=dist[v]+w;
                if(++cnt[r]>=n) {flag=false;break;}
                if(!vis[r]) {q[e=(e+1)%Maxv]=r;vis[r]=1;}
            }
        }
    }
    if(!flag) return false;
    for(int i=1;i<=n;i++)
        if(dist[i]!=inf) f[i]=true;
    return true;
}
int main()
{
    int t,n,m,s,fr,to,w;
    scanf("%d",&t);
    while(t--){
        memset(head,-1,sizeof head);
        scanf("%d%d%d",&n,&m,&s);
        for(int i=0;i<m+s;i++){
            scanf("%d%d%d",&fr,&to,&w);
            w=i>=m?-w:w;
            edge[i+m]=line(to,w),nxt[i+m]=head[fr],head[fr]=i+m;
            if(i<m) edge[i]=line(fr,w),nxt[i]=head[to],head[to]=i;
        }
        memset(f,0,sizeof f);
        int k=1;
        for(;k<=n;k++)
            if(!f[k]){
                if(!spfa(k,n)) break;
            }
        if(k<=n) puts("YES");
        else puts("NO");
    }
	return 0;
}


你可能感兴趣的:(poj 3259 Wormholes)