- 强化学习原理与代码实战案例讲解
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1什么是强化学习?强化学习(ReinforcementLearning,RL)是机器学习的一个重要分支,它关注的是智能体(Agent)如何在环境中通过与环境交互来学习最优的行为策略。与其他机器学习方法不同,强化学习并不依赖于预先标注的数据,而是通过试错的方式来学习。想象一下,你正在训练一只小狗学习坐下。你不会给它看成千上万张“坐下”的照片,而是会给它一些指令,比如“坐下”,如果它照
- OpenCV机器学习(1)人工神经网络 - 多层感知器类cv::ml::ANN_MLP
村北头的码农
OpenCVopencv机器学习人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::ml::ANN_MLP是OpenCV库中的一部分,用于实现人工神经网络-多层感知器(ArtificialNeuralNetwork-Multi-LayerPerceptron,ANN-MLP)。它提供了一种方式来创建和训练多层感知器模型,以解决分类、回归等
- 运用python制作一个完整的股票分析系统
大懒猫软件
python开发语言djangobeautifulsoup
使用python制作一个股票分析系统,可以通过股票价格走势动态界面,实时动态监测不同类型股票的变化情况。以下是一个完整的股票分析系统开发指南,包括股票价格走势动态界面和实时监测功能。这个系统将结合网络爬虫、数据分析、机器学习和可视化技术,帮助你实时监测不同类型股票的变化情况。1.系统功能概述数据采集:使用网络爬虫技术从财经网站采集股票数据。数据处理:计算技术指标(如KDJ、BOLL)并进行数据预处
- Google Cloud技术学习总结
谭俊杰Jerry
人工智能
GoogleCloudPlatform(GCP)是由Google提供的一套云计算服务,帮助企业和开发者利用Google的基础设施来构建、部署和扩展应用程序。GCP提供了广泛的服务,涵盖计算、存储、数据分析、机器学习和网络等领域。以下是GoogleCloud的技术总结:核心服务计算服务GoogleComputeEngine:提供虚拟机(VM)实例,支持自定义配置,适合各种工作负载。GoogleKub
- DeepSeek R1蒸馏版模型部署的实战教程
herosunly
DeepSeek从入门到精通deepseek大模型人工智能实战教程
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法大赛评委,编写微软OpenAI考试认证指导手册。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。授权多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。
- 强化学习在连续动作空间的应用:DDPG与TD3
AI天才研究院
计算AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA计算AI大模型应用
1.背景介绍1.1强化学习简介强化学习(ReinforcementLearning,简称RL)是一种机器学习方法,它通过让智能体(Agent)在环境(Environment)中与环境进行交互,学习如何根据观察到的状态(State)选择动作(Action),以最大化某种长期累积奖励(Reward)的方法。强化学习的核心问题是学习一个策略(Policy),即在给定状态下选择动作的映射关系。1.2连续动
- 书籍-《机器学习的秘密:它是如何工作的以及它对你的意义》
机器学习深度学习人工智能
书籍:SecretsOfMachineLearning:HowItWorksAndWhatItMeansForYou作者:TomKohn出版:WorldScientificPublishingCoPteLtd编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《机器学习的秘密:它是如何工作的以及它对你的意义》01书籍介绍在众多关于机器学习和人工智能的技术文献及充满恐慌的书籍中,《机器学习的秘密》犹
- python 学习曲线函数_如何使用学习曲线来诊断你的LSTM模型的行为?(附代码)...
weixin_39576066
python学习曲线函数
LSTM是一种时间递归神经网络,适合于处理和预测时间序列中间隔和延迟相对较长的重要事件。在自然语言处理、语言识别等一系列的应用上都取得了很好的效果。《LongShortTermMemoryNetworkswithPython》是澳大利亚机器学习专家JasonBrownlee的著作,里面详细介绍了LSTM模型的原理和使用。该书总共分为十四个章节,具体如下:第一章:什么是LSTMs?第二章:怎么样训练
- 【漫话机器学习系列】041.信息丢失(dropout)
IT古董
漫话机器学习系列专辑机器学习人工智能深度学习
信息丢失(Dropout)Dropout是一种广泛应用于神经网络训练中的正则化技术,旨在减少过拟合(overfitting),提高模型的泛化能力。虽然"信息丢失"(dropout)这个术语在某些情况下可能引起误解,指的并非是数据的丢失,而是训练过程中故意“丢弃”神经网络中的部分神经元。这种做法可以避免模型过于依赖于某些特定的神经元,从而提高模型在新数据上的表现。Dropout的工作原理在神经网络的
- 第二章:12.3 建立表现基准
望云山190
基准性能水平人工智能机器学习
背景介绍语音识别是一种常见的机器学习应用,用户通过语音输入代替键盘输入,系统需要将语音转换为文本。在这个过程中,算法的性能可以通过训练误差和交叉验证误差来评估。误差定义训练误差(Jtrain):指算法在训练数据集上无法正确转录的音频片段的百分比。在这个例子中,训练误差是10.8%,意味着算法在训练数据上犯了10.8%的错误。交叉验证误差(Jcv):指算法在未见过的数据(交叉验证集)上无法正确转录的
- 第二章:12.4 学习曲线
望云山190
深度学习机器学习人工智能
学习曲线的基本概念学习曲线是展示机器学习模型性能如何随着训练数据量增加而变化的图表。它们可以帮助我们理解模型在不同数据量下的表现,以及模型是否过拟合或欠拟合。二阶模型的学习曲线交叉验证错误(Jcv):这条绿色曲线表示模型在未见过的数据上的表现。它反映了模型的泛化能力,即模型对新数据的预测能力。训练错误(Jtrain):这条红色曲线表示模型在训练数据上的表现。它反映了模型对训练数据的拟合程度。学习曲
- 机器学习相关基础
星辰瑞云
机器学习
1.预备知识人工智能:用人工的方法在机器(计算机)上实现的智能;或者说是人们使机器具有类似于人的智能。人工智能学科:人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门技术科学。2.日常生活中的机器学习:①称为RGB(由红色,绿色,蓝色组成),这种是欠拟合欠拟合和过拟合区别:•欠拟合(Underfitting):模型在训练数据上表现不佳,无法很好地捕捉数据中的规律。通
- FastAPI:解锁高性能API开发的密钥,轻松构建现代Web服务
醉心编码
人工智能基础fastapi前端
FastAPI:解锁高性能API开发的密钥,轻松构建现代Web服务一、核心特点二、应用场景三、技术优势四、安装与基本用法五、社区与文档FastAPI是一个基于Python的现代、快速(高性能)的Web框架,专门用于构建APIs,特别是基于Python的RESTfulAPIs。它以其高性能、易用性和可扩展性而闻名,适合开发者、数据科学家和机器学习工程师等多种岗位使用。以下是对FastAPI的详细介绍
- AIGC开启人工智能新时代
靖节先生
人工智能
AIGC:开启智能生成内容的全新时代在数字化技术飞速发展的当下,AIGC(ArtificialIntelligence-GeneratedContent)横空出世,宛如一颗璀璨的新星照亮了内容创作领域的天空。它正以不可阻挡之势重塑着我们的生活、工作与娱乐方式,成为众多行业创新发展的重要驱动力。一、AIGC的概念AIGC,即人工智能生成内容,是指利用人工智能技术自动生成各类内容的过程。它依托机器学习
- 推荐学习图像处理的入门书:《Python图像处理实战》
天飓
学习感悟学习图像处理python
《Python图像处理实战》是一本全面介绍Python图像处理技术的实用指南,是由人民邮电出版社于2020年12月出版。这本书的作者桑迪潘·戴伊是一位兴趣广泛的数据科学家,主要研究机器学习、深度学习、图像处理和计算机视觉。在《Python图像处理实战》一书中,作者主要介绍了如何用Python图像处理库(如PIL、python-opencv、Scipy等),机器学习库(scikit-learn)和深
- 使用 OpenCV 和 Python 对图像进行卡通化
无水先生
AI原理和python实现人工智能综合opencvpython人工智能
关键词:OpenCVlibrarytoconvertimagestocartoons目录一、说明二、OpenCV2.1要求支持库2.2方法2.3实施和执行三、定义卡通化函数3.1添加按钮3.2保存图像四、结论一、说明在本文中,我们将构建一个有趣的应用程序,将提供给它的图像卡通化。为了构建这个卡通化应用程序,我们将使用python和OpenCV。这是机器学习令人兴奋和激动的应用程序之一。在构建此应用
- 机器学习:朴素贝叶斯
小源学AI
人工智能机器学习人工智能朴素贝叶斯
概率1.1定义概率表示随机事件发生可能性大小的一个数值,随机事件指在相同条件下,可能出现也可能不出现的事件。例如:抛硬币:当我们抛硬币时,可以正面朝上也可以反面朝上,正面或反面朝上的可能性被称为概率。理想状态下正反概率都是0.5。掷骰子:掷一个六面的骰子,每个点出现的概率是1/6,因为每个面出现的机会是均等的。抽取商品:一批商品包含良品和次品,随机抽取一件,抽取良品或次品是一个随机事件,经过大量实
- 人工智能的发展领域之GPU加速计算的应用概述、架构介绍与教学过程
m0_74824592
面试学习路线阿里巴巴人工智能架构
文章目录一、架构介绍GPU算力平台概述优势与特点二、注册与登录账号注册流程GPU服务器类型配置选择指南内存和存储容量网络带宽CPU配置三、创建实例实例创建步骤镜像选择与设置四、连接实例SSH连接方法远程桌面配置一、架构介绍GPU算力平台概述一个专注于GPU加速计算的专业云服务平台,隶属于软件和信息技术服务业。主要面向高校、科研机构和企业用户。该平台提供多种NVIDIAGPU选择,适用于机器学习、人
- 机器学习 - 学习线性模型的重要性
谦亨有终
跟着AI向前走机器学习学习人工智能
在接下来的博文中,我们将重点学习线性模型的回归模型和分类模型,在学习之前,让我们来了解一下学习线性模型的重要性,以及如何入门学习。一、作为初学者如何学习线性模型?作为初学者,要高效学习机器学习以及其中的线性模型,可以遵循以下几个步骤和建议:(一)、机器学习的整体学习策略打好数学基础线性代数:理解向量、矩阵、线性变换等,这些是理解模型表示(如y=w^Tx+b)和算法优化的基础。微积分:掌握导数、梯度
- 【机器学习】多元线性回归
T0uken
Python全栈开发1024程序员节机器学习算法线性回归
在实际应用中,许多问题都包含多个特征(输入变量),而不仅仅是单个输入变量。多元线性回归是线性回归的扩展,它能够处理多个输入特征并建立它们与目标变量的线性关系。本教程将系统性推演多元线性回归,包括向量化处理、特征放缩、梯度下降的收敛性和学习率选择等,并使用numpy实现。最后,我们会通过sklearn快速实现多元线性回归模型。多元线性回归模型简介多元线性回归的模型公式为:y=X⋅w+by=X\cdo
- 【第15章:量子深度学习与未来趋势—15.1 量子计算基础与量子机器学习的发展背景】
再见孙悟空_
#【深度学习・探索智能核心奥秘】机器翻译自然语言处理计算机视觉量子计算人工智能深度学习机器学习
想象一下,你正在用ChatGPT生成一篇小说,突然它卡在"主角穿越虫洞"的情节上——这不是因为想象力枯竭,而是传统计算机的晶体管已经烧到冒烟。当前AI大模型的参数规模每4个月翻一番,但摩尔定律的终结让经典计算机的算力增长首次跟不上AI的进化速度。这时候,量子计算带着它的"超能力"登场了:1台50量子位的量子计算机,处理某些问题的速度可达超级计算机的1亿倍。这场算力革命,正在改写深度学习的游戏规则。
- 【深度解析】ICLR:人工智能领域的顶级学术会议 | 顶会与SCI期刊的区别全攻略
X_taiyang18
人工智能
【深度解析】ICLR:人工智能领域的顶级学术会议|顶会与SCI期刊的区别全攻略简介在人工智能和机器学习领域,ICLR(InternationalConferenceonLearningRepresentations)被誉为“深度学习的顶级会议”。自2013年由深度学习三巨头中的YoshuaBengio和YannLeCun创办以来,ICLR迅速崛起,成为全球科研人员争相投稿的学术盛会。那么,ICLR
- 使用多模态大语言模型进行深度学习的图像、文本和语音数据增强
数行天下
人工智能语言模型深度学习人工智能自然语言处理
在过去的五年里,研究方向已从传统的机器学习(ML)和深度学习(DL)方法转向利用大语言模型(LLMs),包括多模态方法,用于数据增强,以提高泛化能力,并在训练深度卷积神经网络时防止过拟合。然而,现有的综述文章主要集中于机器学习和深度学习技术或有限的模态(如文本或图像),在涵盖LLM方法的最新进展和多模态应用方面仍存在空白。本文通过探索利用多模态LLMs进行图像、文本和语音数据增强的最新文献,填补了
- 《深入浅出LLM基础篇》(三):大模型结构分类
GoAI
深入浅出LLM深入浅出AI自然语言处理NLP大模型LLM人工智能transformerchatgpt
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介
- Rasa:开源的机器学习框架
Indra_ran
开源机器学习人工智能linuxcentos运维
一、Rasa简介Rasa是一套用来构建基于上下文的AI小助手和聊天机器人框架。分为两个主要的模块:NLU:自然语言理解模块,实现意图识别以及槽值的提取,将用户的输入转化为结构性数据,在训练过程中,为了提高从用户信息的实体识别能力,采用了预先训练的实体提取器Pre-trainedEntityExtractors,正则表达式Regexes,同义词Synonyms等RasaCore:对话管理模块,也是一
- 机器学习:k均值
golemon.
ML机器学习均值算法人工智能
所有代码和文档均在golitter/Decoding-ML-Top10:使用Python优雅地实现机器学习十大经典算法。(github.com),欢迎查看。在“无监督学习”中,训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律,为进一步的数据分析提供基础,较为经典的是聚类。**聚类试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集称为一个“簇”。**聚
- 电子电气架构 --- 机器学习推动车载雷达的发展
车载诊断技术
汽车行业车辆信息安全机器学习人工智能电子电器框架网络架构汽车
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师:简单,单纯,喜欢独处,独来独往,不易合同频过着接地气的生活,除了生存温饱问题之外,没有什么过多的欲望,表面看起来很高冷,内心热情,如果你身边有这样灵性的人,一定要好好珍惜他们眼中有神有光,干净,给人感觉很舒服,有超强的感知能力有形的无形的感知力很强,能感知人的内心变化喜欢独处,好静,
- DeepSeek+WPS/Office手把手教你玩转智能办公
herosunly
DeepSeek从入门到精通deepseek大模型人工智能officewps智能办公
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法Q大赛评委,编写微软OpenAI考试认证指导手册。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第名。授权多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。
- DeepSeek R1 与 OpenAI O1:机器学习模型的巅峰对决
学无止尽5
机器学习人工智能
我的个人主页我的专栏:人工智能领域、java-数据结构、Javase、C语言,希望能帮助到大家!!!点赞收藏❤一、引言在机器学习的广袤天地中,大型语言模型(LLM)无疑是最为璀璨的明珠。它们凭借卓越的语言理解与生成能力,正以前所未有的方式重塑着我们与信息交互的模式。DeepSeekR1和OpenAIO1作为其中的佼佼者,代表了当前技术的前沿水准,在架构设计、训练方法、性能表现以及应用场景等诸多层面
- 做其他的不好吗?别写代码了(4)
chalmers_15
ai文章人工智能
AI技术在IT领域的应用确实已经成为一个趋势,这对IT从业者来说既是机遇也是挑战。我们需要客观地看待AI对IT行业的影响:AI可以自动化和优化很多IT工作,如系统监控、故障诊断、代码编写等,这可能会替代一些传统的IT工作岗位。但同时AI也会创造新的IT工作机会,如AI系统的开发、部署和维护,以及利用AI技术进行创新和优化等。未来IT从业者需要更多掌握AI相关的技能,如机器学习、数据分析等,以适应A
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C