【APIO2012】【BZOJ2809】派遣dispatching

2809: [Apio2012]dispatching

Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 1932 Solved: 967
[Submit][Status][Discuss]
Description

在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿。在这个帮派里,有一名忍者被称之为 Master。除了 Master以外,每名忍者都有且仅有一个上级。为保密,同时增强忍者们的领导力,所有与他们工作相关的指令总是由上级发送给他的直接下属,而不允许通过其他的方式发送。现在你要招募一批忍者,并把它们派遣给顾客。你需要为每个被派遣的忍者 支付一定的薪水,同时使得支付的薪水总额不超过你的预算。另外,为了发送指令,你需要选择一名忍者作为管理者,要求这个管理者可以向所有被派遣的忍者 发送指令,在发送指令时,任何忍者(不管是否被派遣)都可以作为消息的传递 人。管理者自己可以被派遣,也可以不被派遣。当然,如果管理者没有被排遣,就不需要支付管理者的薪水。你的目标是在预算内使顾客的满意度最大。这里定义顾客的满意度为派遣的忍者总数乘以管理者的领导力水平,其中每个忍者的领导力水平也是一定的。写一个程序,给定每一个忍者 i的上级 Bi,薪水Ci,领导力L i,以及支付给忍者们的薪水总预算 M,输出在预算内满足上述要求时顾客满意度的最大值。

1 ≤N ≤ 100,000 忍者的个数;
1 ≤M ≤ 1,000,000,000 薪水总预算;

0 ≤Bi < i 忍者的上级的编号;
1 ≤Ci ≤ M 忍者的薪水;
1 ≤Li ≤ 1,000,000,000 忍者的领导力水平。

Input

从标准输入读入数据。

第一行包含两个整数 N和 M,其中 N表示忍者的个数,M表示薪水的总预算。

接下来 N行描述忍者们的上级、薪水以及领导力。其中的第 i 行包含三个整 Bi , C i , L i分别表示第i个忍者的上级,薪水以及领导力。Master满足B i = 0,并且每一个忍者的老板的编号一定小于自己的编号 Bi < i。

Output

输出一个数,表示在预算内顾客的满意度的最大值。

Sample Input

5 4

0 3 3

1 3 5

2 2 2

1 2 4

2 3 1

Sample Output

6

HINT

如果我们选择编号为 1的忍者作为管理者并且派遣第三个和第四个忍者,薪水总和为 4,没有超过总预算 4。因为派遣了 2 个忍者并且管理者的领导力为 3,

用户的满意度为 2 ,是可以得到的用户满意度的最大值。

Source

这个题做法很多,可以dfs序+主席树,可以平衡树启发式合并,可以左偏树
我写的Splay启发式合并

显然每次选择费用最小的当下属.
对每个节点把他的孩子节点合并到他的平衡树上,对每个节点记录一下子树费用和.
然后乱搞一下233
然而Codevs和BZOJ过了,COGS上单点时限0.4s就被卡掉了…

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MAXN 100010
#define LL long long
using namespace std;
int n,m,top,temp;
LL maxn;
int root,que[MAXN];
int L[MAXN];
struct splay
{
    int ch[2],fa;//0左1右 
    int size,data;
    LL sum;//子树费用和 
}tree[MAXN];
struct edge
{
    int to;
    edge *next;
}e[MAXN],*prev[MAXN];
void in(int &x)
{
    char ch=getchar();x=0;
    while (!(ch>='0'&&ch<='9')) ch=getchar();
    while (ch>='0'&&ch<='9')    x=x*10+ch-'0',ch=getchar();
}
inline void add(int u,int v)
{
    e[++top].to=v;e[top].next=prev[u];prev[u]=&e[top];
}
inline void calc(int x)
{
    tree[x].size=tree[tree[x].ch[0]].size+tree[tree[x].ch[1]].size+1;
    tree[x].sum=tree[tree[x].ch[0]].sum+tree[tree[x].ch[1]].sum+tree[x].data;
}
inline void rot(int x,bool flag)//0左旋1右旋 
{
    int y=tree[x].fa;
    tree[y].ch[!flag]=tree[x].ch[flag];
    if  (tree[x].ch[flag])  tree[tree[x].ch[flag]].fa=y;
    tree[x].fa=tree[y].fa;
    if  (tree[tree[y].fa].ch[0]==y) tree[tree[y].fa].ch[0]=x;
        else    tree[tree[y].fa].ch[1]=x;
    tree[x].ch[flag]=y;tree[y].fa=x;
    calc(x);calc(y);
}
inline void Splay(int x,int f)
{
    if (!x||x==f)   return;
    while   (tree[x].fa!=f)
    {
        if  (tree[tree[x].fa].fa==f)
        {
            if  (tree[tree[x].fa].ch[0]==x) rot(x,1);
            else    rot(x,0);
        }
        else
        {
            int y=tree[x].fa,z=tree[y].fa;
            if  (tree[z].ch[0]==y)  
                if  (tree[y].ch[0]==x)  rot(y,1),rot(x,1);
                else    rot(x,0),rot(x,1);
            else
                if  (tree[y].ch[0]==x)  rot(x,1),rot(x,0);
                else    rot(y,0),rot(x,0);
        }
    }
    if  (x) calc(x);
    if  (f) calc(f);
}
inline void insert(int x,int node)
{
    int N=x,t=0;
    while   (N)
    {
        t=N;
        if  (tree[node].data>=tree[N].data) N=tree[N].ch[1];
        else    N=tree[N].ch[0];
    }
    tree[node].fa=t;
    if  (tree[node].data>=tree[t].data) tree[t].ch[1]=node;
    else    tree[t].ch[0]=node;
    Splay(node,0);
}
inline void insert(int &rt,int F,int x)
{
   if   (rt==0)
   {
       rt=x;
       tree[x].fa=F;
       Splay(x,0);
       return;
   }
   if   (tree[x].data<=tree[rt].data)   insert(tree[rt].ch[0],rt,x);
   else insert(tree[rt].ch[1],rt,x);
}
inline void Union(int x,int y)
{
    Splay(x,0);Splay(y,0);
    calc(x);calc(y);
    if  (tree[y].size>tree[x].size) swap(x,y);
    int head=0,tail=1;
    que[0]=x,que[1]=y;
    while   (head<tail)
    {
        int now=que[++head];
        if  (tree[now].ch[0])   que[++tail]=tree[now].ch[0];
        if  (tree[now].ch[1])   que[++tail]=tree[now].ch[1];
        tree[now].ch[0]=tree[now].ch[1]=0;
        insert(que[head-1],0,now);
    }
}
inline int rank(int data,int x)
{
    if  (!x)    return 0;
    if (data>=tree[x].sum)  return tree[x].size;
    if (data==tree[tree[x].ch[0]].sum+tree[x].data) return tree[tree[x].ch[0]].size+1;
    if (data<tree[tree[x].ch[0]].sum+tree[x].data) return rank(data,tree[x].ch[0]);
    return tree[tree[x].ch[0]].size+1+rank(data-tree[tree[x].ch[0]].sum-tree[x].data,tree[x].ch[1]);
}
inline void solve()
{
    for (int x=n;x;x--)
    {
        for (edge *i=prev[x];i;i=i->next)   Union(i->to,x);
        Splay(x,0);
        maxn=max(maxn,(long long)(rank(m,x))*L[x]);
    }
}
int main()
{
    scanf("%d%d",&n,&m);
    for (int i=1;i<=n;i++)
    {
        int f,c;
        in(f);in(c);in(L[i]);
        if  (f==0)  root=i;
        else    add(f,i);
        tree[i].size=1;tree[i].sum=tree[i].data=c;
        tree[i].ch[0]=tree[i].ch[1]=tree[i].fa=0;
    }
    solve();
    cout<<maxn<<endl;
}

你可能感兴趣的:(平衡树,启发式合并)