numpy 文件存取



1. np.tofile() & np.fromfile()

复制代码
import numpy as np
import os

os.chdir("d:\\")
a = np.arange(0,12)
a.reshape(3,4)
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])

a.tofile("a.bin")                                    #保存至a.bin

b = np.fromfile("a.bin", dtype=np.int32)  #从文件中加载数组,错误的dtype会导致错误的结果
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])

b.reshape(3,4)
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
#读取的数据将为一维数组,需要使用reshape改变其数组结构
复制代码

2. np.save() & np.load() & np.savez()

load()和save()用Numpy专用的二进制格式保存数据,它们会自动处理元素类型和形状等信息。savez()提供了将多个数组存储至一个文件的能力,调用load()方法返回的对象,可以使用数组名对各个数组进行读取。默认数组名arr_0,arr_1,arr_2......

np.save("a.npy", a.reshape(3,4))
c = np.load("a.npy")
c
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])


多个数组存储至一个文件:

复制代码
a = np.array([[1,2,3],[4,5,6]])
b = np.arange(0,1.0,0.1)
c = np.sin(b)
np.savez("result.npz", a, b, sin_arr=c)  #使用sin_arr命名数组c
r = np.load("result.npz") #加载一次即可
r["arr_0"]
array([[1, 2, 3],
       [4, 5, 6]])
r["arr_1"]
array([ 0. ,  0.1,  0.2,  0.3,  0.4,  0.5,  0.6,  0.7,  0.8,  0.9])
r["sin_arr"]
array([ 0.        ,  0.09983342,  0.19866933,  0.29552021,  0.38941834,
        0.47942554,  0.56464247,  0.64421769,  0.71735609,  0.78332691])
复制代码

 可以使用解压软件解压缩.npz文件会得到存储的各个数组对应的.npy文件以便进行遍历。

3. savetxt() & loadtxt()

复制代码
a = np.arange(0,12,0.5).reshape(4,-1)
a
array([[  0. ,   0.5,   1. ,   1.5,   2. ,   2.5],
       [  3. ,   3.5,   4. ,   4.5,   5. ,   5.5],
       [  6. ,   6.5,   7. ,   7.5,   8. ,   8.5],
       [  9. ,   9.5,  10. ,  10.5,  11. ,  11.5]])
np.savetxt("a.txt", a)
np.loadtxt("a.txt")
array([[  0. ,   0.5,   1. ,   1.5,   2. ,   2.5],
       [  3. ,   3.5,   4. ,   4.5,   5. ,   5.5],
       [  6. ,   6.5,   7. ,   7.5,   8. ,   8.5],
       [  9. ,   9.5,  10. ,  10.5,  11. ,  11.5]])
np.savetxt("a.txt", a, fmt="%d", delimiter=",") #指定存储数据类型为整型,分隔符为,
np.loadtxt("a.txt", delimiter=',') #以,分隔符读取
array([[  0.,   0.,   1.,   1.,   2.,   2.],
       [  3.,   3.,   4.,   4.,   5.,   5.],
       [  6.,   6.,   7.,   7.,   8.,   8.],
       [  9.,   9.,  10.,  10.,  11.,  11.]])
复制代码

你可能感兴趣的:(numpy 文件存取)