混合背包 hdu5410 CRB and His Birthday

传送门:点击打开链接

题意:你有M块钱,现在有N件商品

第i件商品要Wi块,如果你购买x个这样的商品,你将得到Ai*x+Bi个糖果

问能得到的最多的糖果数


思路:非常好的一道01背包和完全背包结合的题目

首先,对于第i件商品,如果只买1个,得到的价值是Ai+Bi

如果在买1个的基础上再买,得到的价值就是Ai

也就是说,除了第一次是Ai+Bi,以后购买都是Ai

那么,我们能否将i商品拆分成两种商品,其中两种商品的代价都是Wi,

第一种的价值是Ai+Bi,但是只允许买一次

第二种的价值是Ai,可以无限次购买


接下来我们来讨论这样拆的正确性

理论上来讲,买第二种之前,必须要买第一种

但是对于这道题,由于Ai+Bi>=Ai是必然的,因为Bi肯定是非负

所以对于代价相同,价值大的肯定会被先考虑

换句话来说,如果已经开始考虑第二种商品了,那么第一种商品就肯定已经被添加到背包里了~


所以,这题我们把n件商品拆分成2*n件商品,对于第一种商品做01背包,对于第二种商品做完全背包,这样就把题目转换成了非常熟悉的题目,也就能顺利AC了

#include<map>
#include<set>
#include<cmath>
#include<stack>
#include<queue>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
#define FIN freopen("input.txt","r",stdin)

using namespace std;
typedef long long LL;
typedef pair<int, int> PII;

const int MX = 2e4 + 5;

int dp[MX];
int A[MX], B[MX], rear;

int main() {
    int T, V, n; //FIN;
    scanf("%d", &T);
    while(T--) {
        memset(dp, 0, sizeof(dp));

        scanf("%d%d", &V, &n);
        for(int i = 1; i <= n; i++) {
            int w, a, b;
            scanf("%d%d%d", &w, &a, &b);

            A[i] = w; B[i] = a + b;
            A[i + n] = w; B[i + n] = a;
        }

        for(int i = 1; i <= n; i++) {
            for(int j = V; j >= A[i]; j--) {
                dp[j] = max(dp[j], dp[j - A[i]] + B[i]);
            }
        }
        for(int i = 1 + n; i <= 2 * n; i++) {
            for(int j = A[i]; j <= V; j++) {
                dp[j] = max(dp[j], dp[j - A[i]] + B[i]);
            }
        }

        printf("%d\n", dp[V]);
    }
    return 0;
}


你可能感兴趣的:(混合背包 hdu5410 CRB and His Birthday)