- k均值聚类算法考试例题_k均值算法(k均值聚类算法计算题)
寻找你83497
k均值聚类算法考试例题
?算法:第一步:选K个初始聚类中心,z1(1),z2(1),…,zK(1),其中括号内的序号为寻找聚类中心的迭代运算的次序号。聚类中心的向量值可任意设定,例如可选开始的K个.k均值聚类:---------一种硬聚类算法,隶属度只有两个取值0或1,提出的基本根据是“类内误差平方和最小化”准则;模糊的c均值聚类算法:--------一种模糊聚类算法,是.K均值聚类算法是先随机选取K个对象作为初始的聚类
- 机器学习-聚类算法
不良人龍木木
机器学习机器学习算法聚类
机器学习-聚类算法1.AHC2.K-means3.SC4.MCL仅个人笔记,感谢点赞关注!1.AHC2.K-means3.SC传统谱聚类:个人对谱聚类算法的理解以及改进4.MCL目前仅专注于NLP的技术学习和分享感谢大家的关注与支持!
- K-means 算法的介绍与应用
小魏冬琅
matlab算法kmeans机器学习
目录引言K-means算法的基本原理表格总结:K-means算法的主要步骤K-means算法的MATLAB实现优化方法与改进K-means算法的应用领域表格总结:K-means算法的主要应用领域结论引言K-means算法是一种经典的基于距离的聚类算法,在数据挖掘、模式识别、图像处理等多个领域中得到了广泛应用。其核心思想是将相似的数据对象聚类到同一个簇中,而使得簇内对象的相似度最大、簇间的相似度最小
- 聚类分析 | Python密度聚类(DBSCAN)
天天酷科研
聚类分析算法(CLA)python聚类机器学习DBSCAN
密度聚类是一种无需预先指定聚类数量的聚类方法,它依赖于数据点之间的密度关系来自动识别聚类结构。本文中,演示如何使用密度聚类算法,具体是DBSCAN(Density-BasedSpatialClusteringofApplicationswithNoise)来对一个实际的数据集进行聚类分析。一、基本介绍密度聚类的核心思想是将数据点分为高密度区域和低密度区域。高密度区域内的数据点被认为属于同一簇,而低
- pandas/numpy数据结构算法(之行列变换)(二) (tag:行列转换,迪卡尔积,内置函数,数据结构)
MrStubborn_aebe
目录:****1.Numpy-diag矩阵变换stack()/unstack()pd.pivot_table()pd.melt()groupby聚类算法mapping小技巧numpy.vectorize()**在这**里插入图片描述前言最近遇到很多需要迭代和归并数据的情况,一直以来的做法,都是循环主要的键,去进行后续操作。这是最典型的Python操作,然而还是上次提到的效率问题。记得之前朋友和我讲
- 2023-06-09
6d4ff43fbc0b
摘抄随笔置顶自己的感受,先自爱再爱人。心理咨询师黄启团曾说:“任何一段糟糕的关系,其中都有你的一份功劳。因为我们在无意识中教会了别人如何对待自己。”你卑微讨好,会换来得寸进尺;你付出太满,只会换来别人的轻视。我就是这样的,经常多做一些自己的本不该做的事情。结果自己的事情做得比较晚比较慢一些,还被说做事情慢,人家都下班了你还在做自己的事情。还有你没有时间帮忙别人的时候,别人还认为是我该做的事情。你没
- 机器学习之 K-均值聚类算法
维生素¥
机器学习机器学习算法均值算法
K-均值(K-means)聚类算法是一种常用的无监督学习算法,用于将数据集划分为K个不同的簇。该算法通过迭代的方式将数据点分配到最近的簇中,并更新簇的中心,直到收敛为止。一、K-均值聚类算法的基本步骤:初始化K个簇的中心点(可以随机选择或者根据数据集初始化)。将每个数据点分配到最近的簇中。更新每个簇的中心点为该簇所有数据点的平均值。重复步骤2和3,直到簇的中心点不再改变或达到指定的迭代次数。二、K
- 机器学习中的 K-均值聚类算法及其优缺点
安科瑞蒋静
机器学习算法均值算法
K-均值聚类算法是一种常用的无监督学习算法,用于将一组数据点划分为K个不同的聚类。该算法的主要思想是将数据点分配给最接近的聚类中心,并通过迭代优化聚类中心位置,使得聚类内部的数据点之间的距离最小化。算法流程如下:初始化K个聚类中心,可以是随机选择的数据点或者通过其他方法选择。分别计算每个数据点到K个聚类中心的距离,并将其分配给距离最近的聚类中心。更新每个聚类的中心位置为其内部所有数据点的平均值。重
- 微信悬浮窗——信息流大战
爱摄影的奥派
关于浮窗的改动体现在以下三点:首先,点击浮窗后文章页面直接缩小为圆形浮窗按钮,返回到上级菜单。而原置顶功能在置顶后仍然处在文章页面,返回微信首页才能看到置顶条。图片发自App其次,浮窗可以拖动改变位置,拖动到右下角红色区域就可以丢弃取消,同样,唤醒浮窗,也可以用同样的滑动手势来实现。图片发自App就像在微信聊天列表页面下拉唤醒小程序列表一样,在如此有限的界面中,腾讯用交互创新,建立新入口的能力,已
- 数学建模统计题中常用的聚类分类
皆过客,揽星河
数学建模大赛数学建模算法k-means数据处理Pythonnumpy
聚类分类K均值聚类(K-MeansClustering)是一种广泛使用的聚类算法,旨在将数据点分成K个簇,使得簇内的数据点尽可能相似,而簇间的数据点差异尽可能大。以下是对K均值聚类的详细介绍:算法原理K均值聚类算法通过迭代的方式优化簇的划分,步骤如下:1.初始化:选择K个初始簇中心(也称为质心)。这些初始簇中心可以通过随机选择K个数据点,或使用更高级的方法(如K均值++初始化)来确定。2.分配阶段
- Spark入门:KMeans聚类算法
17111_Chaochao1984a
算法sparkkmeans
聚类(Clustering)是机器学习中一类重要的方法。其主要思想使用样本的不同特征属性,根据某一给定的相似度度量方式(如欧式距离)找到相似的样本,并根据距离将样本划分成不同的组。聚类属于典型的无监督学习(UnsupervisedLearning)方法。与监督学习(如分类器)相比1,无监督学习的训练集没有人为标注的结果。在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。
- Spark MLlib模型训练—聚类算法 K-means
不二人生
SparkML实战算法spark-ml聚类
SparkMLlib模型训练—聚类算法K-meansK-means是一种经典的聚类算法,广泛应用于数据挖掘、图像处理、推荐系统等领域。它通过将数据划分为(k)个簇(clusters),使得同一簇内的数据点尽可能相似,而不同簇之间的数据点差异尽可能大。ApacheSpark提供了K-means聚类算法的高效实现,支持大规模数据的分布式计算。本文将详细介绍K-means聚类算法的原理,并结合Spark
- Spark MLlib模型训练—聚类算法 Bisecting K-means
不二人生
SparkML实战算法spark-ml聚类
SparkMLlib模型训练—聚类算法BisectingK-means由于传统的KMeans算法的聚类结果易受到初始聚类中心点选择的影响,因此在传统的KMeans算法的基础上进行算法改进,对初始中心点选取比较严格,各中心点的距离较远,这就避免了初始聚类中心会选到一个类上,一定程度上克服了算法陷入局部最优状态。二分KMeans(BisectingKMeans)算法的主要思想是:首先将所有点作为一个簇
- latex转word python_分分钟甩Word几条街,Python编辑公式竟可以如此简单
weixin_39553904
latex转wordpython
点击上方"Python人工智能技术"关注,星标或者置顶22点24分准时推送,第一时间送达来自:公众号机器之心|编辑:真经君Python人工智能技术(ID:coder_experience)第221次推文图源:百度上一篇:华科博士201万,西安交大本科生100万!华为「天才少年」校招薪资曝光正文用Word写PDE公式简直是找虐。我们在Word中编辑文本时,遇到超复杂的公式,想想就令人头大,一个不小心
- 基于Golang的云原生日志采集服务设计与实践
程序员小乐
运维java大数据kubernetes编程语言
点击上方"编程技术圈"关注,星标或置顶一起成长后台回复“大礼包”有惊喜礼包!每日英文Intheend,it'snottheyearsinyourlifethatcount.It’sthelifeinyouryears.人生到头来,你活了多少岁不算什么,重要的是,你是如何度过这些岁月的。每日掏心话但凡会错过,一定不是最好的。有时候不是不明白,而是明白了也无能为力,于是就保持了沉默。责编:乐乐|来自:
- [写吧动态]5月14日笃定前行,超越自我
858df0fb6cd6
截止2021年5月14日24时,教育行走“一起写吧”群接龙文章共有25篇,来自全国各地的家人们坚持打卡256天,为你们的担当与付出点赞。通过仔细品读家人们的优秀作品,我推荐以下五篇优中选优的文章,给予置顶并点评,期待大家的仔细阅读,真诚地留言、评论、点赞。第一篇是云南普利辉老师的《好想给自己放两天假》。一次次的历练,一幕幕的交流,普老师不放弃才能学有所成,踊跃承担所以才能拔节成长。古人云:逝者如斯
- 自然语言处理系列五十四》文本聚类算法》K-means文本聚类算法原理
陈敬雷-充电了么-CEO兼CTO
算法大数据人工智能自然语言处理nlpai人工智能kmeansAIGC聚类
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列五十四文本聚类算法》K-means文本聚类算法原理K-means文本聚类算法代码实战总结自然语言处理系列五十四文本聚类算法》K-means文本聚类算法原理K-means文本聚类是K-means算法的一个常用应用场景,下面介绍
- 自然语言处理系列五十五》文本聚类算法》LDA主题词-潜在狄利克雷分布模型算法原理
陈敬雷-充电了么-CEO兼CTO
人工智能大数据算法算法自然语言处理聚类AIGCaigcchatgpt大数据
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列五十五文本聚类算法》LDA主题词-潜在狄利克雷分布模型算法原理LDA主题词-潜在狄利克雷分布模型代码实战总结自然语言处理系列五十五文本聚类算法》LDA主题词-潜在狄利克雷分布模型算法原理LDA是潜在狄利克雷分布模型的简称,也
- 华为 HCIP-Datacom H12-821 题库 (1)
可惜已不在
HCIP华为网络
有需要题库的可以看主页置顶需要题库的加Q裙V群仅进行学习交流1.MSTP有不同的端口角色,对此说法不正确的是:A、MSTP中除边缘端口外,其他端口角色都参与MSTP的计算过程B、MSTP同一端口在不同的生成树实例中可以担任不同的角色。C、MSTP域边缘端口是指位于MST域的边缘并连接其它MST域或SST的端口D、Backup端口作为根端口的备份,提供了从指定桥到根的另一条可切换路径答案:D解析:在
- 华为 HCIP-Datacom H12-821 题库 (4)
可惜已不在
HCIP华为网络
有需要题库的可以看主页置顶1.缺省情况下,广播型网络中运行IS-IS的路由器,DIS发送CSNP报文的周期为多少秒?A、10B、3.3C、30D、40答案:A解析:广播型网络中运行IS-IS的路由器,DIS发送CSNP报文周期默认时间为10s2.当OSPF运行在广播网络中时,需要选举DR和BDR。那么在下列哪种状态下会进行DR和BDR的选举?A、2-way状态B、Exchange状态C、Full状
- 工业相机参数之帧率相关知识详解
小白学视觉
人工智能javapython计算机视觉编程语言
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达工业相机是机器视觉系统的重要组成部分之一,在机器视觉系统中有着非常重要的作用。工业相机已经被广泛应用于工业生产线在线检测、智能交通,机器视觉,科研,军事科学,航天航空等众多领域。工业相机的主要参数包括:分辨率、帧率、像素、像元尺寸、光谱响应特性等。下面我们来对工业相机帧率的相关知识进行讲解:帧率(Framerate)是用于测量显
- [写吧动态]3月19日追光者,必将身披光芒
858df0fb6cd6
今天是2021年3月19日,截止2021年3月19日24时,教育行走“一起写吧”群接龙文章共有31篇,来自全国各地的家人们坚持打卡200天,为你们的担当与付出点赞。通过仔细品读家人们的优秀作品,我推荐以下五篇优中选优的文章,给予置顶并点评,期待大家的仔细阅读,真诚地留言、评论、点赞。第一篇是云南普利辉老师的《答案简单,但做到却很难》普利辉老师试问:没有学习,你拿什么来“武装”自己的思想,从而更好地
- PHP 两个二维数组进行合并
喜欢硬编码
PHPphp
2020年11月25日下午16:03:31lijianz原文链接:业务场景假设需要查询出一个表中的所有联系人数据,由于数据过于庞大,不能将数据表内的数据一次性全部查询出来,只能按照分页查询进行进一步的筛选数据,如果需要返回某些用户状态,比如上线,置顶聊天等等。那么必须操作两个数组,一个数组按照分页查询用户数据,一个数组按照某个条件查询某状态的用户数据//arr1数组是查询某状态的用户数据(固定每页
- 机器学习:DBSCAN算法(内有精彩动图)
吃什么芹菜卷
机器学习机器学习算法人工智能
目录前言一、DBSCAN算法1.动图展示(图片转载自网络)2.步骤详解3.参数配置二、代码实现1.完整代码2.代码详解1.导入数据2.通过循环确定参数最佳值总结前言DBSCAN(Density-BasedSpatialClusteringofApplicationswithNoise)是一种基于密度的聚类算法。它可以发现任意形状的簇并能够处理噪声数据。一、DBSCAN算法1.动图展示(图片转载自网
- 音视频相关文章总目录
cuijiecheng2018
FFmpeg源码分析音视频技术音视频
为了方便各位观看,本文置顶,以目录形式汇集我写过的大部分音视频专题文章。之后文章更新,本目录也会同步更新。写得不好和零零散散的文章就不放在这里了:=================================================================音视频入门基础:像素格式专题系列文章:音视频入门基础:像素格式专题(1)——RGB简介音视频入门基础:像素格式专题(2)——
- 模糊C-means算法原理及Python实践
doublexiao79
数据分析与挖掘算法python
模糊C-means算法原理及Python实践一、目标函数二、隶属度矩阵和聚类中心三、算法步骤四、终止条件五、算法特点六、Python实现模糊C-means(FuzzyC-Means,简称FCM)算法是一种经典的模糊聚类算法,它在数据分析、数据挖掘、图像处理等多个领域有着广泛的应用。FCM算法通过为每个数据点分配模糊隶属度,将数据点划分到不同的聚类中心,从而实现对数据集的聚类分析。以下是模糊C-me
- 【闲谈】聚类算法的金融数据挖掘应用及实践
爱写代码的July
其他金融大数据数据分析数据可视化python
目录一数据挖掘技术在金融领域应用概述二聚类算法介绍三聚类算法在金融数据挖掘中的应用1.聚类算法在客户细分领域的应用2.聚类算法在客户信用评估领域的应用四算法实践与个人体会1.聚类算法的实践——以k-means算法为例的银行客户数据集分析2.个人实际应用体会五总结与展望参考文献一数据挖掘技术在金融领域应用概述随着金融行业的不断发展,金融领域数字化转型程度愈发加深,计算机科学在金融领域的应用显得更为重
- 程序猿成长之路之数据挖掘篇——Kmeans聚类算法
zygswo
数据挖掘数据挖掘算法kmeans
Kmeans是一种可以将一个数据集按照距离(相似度)划分成不同类别的算法,它无需借助外部标记,因此也是一种无监督学习算法。什么是聚类用官方的话说聚类就是将物理或抽象对象的集合分成由类似的对象组成的多个类的过程。用自己的话说聚类是根据不同样本数据间的相似度进行种类划分的算法。这种划分可以基于我们的业务需求或建模需求来完成,也可以单纯地帮助我们探索数据的自然结构和分布。什么是K-means聚类用官方的
- Unity项目增加字体裁剪
xiyouice
unity游戏引擎
因为项目里有字体裁剪缩小字体文件的需求,在网上搜索了一番。有个很靠谱的参考文章:https://www.cnblogs.com/yaukey/p/compare_fontsubsetgui_fontpruner_for_unity.html然后就使用了这篇文章里提到的FontPruner工具。下载之后就是文章置顶附件这样的jar包,放入工程里。需要编写脚本,根据表格工具导出的项目文本对应字体的tx
- K-means聚类算法:从原理到实践的全面解读
一休哥助手
人工智能算法kmeans聚类
引言在当今数据驱动的时代,机器学习技术的发展已经成为各行各业的重要驱动力。在机器学习中,聚类算法是一类被广泛应用的技术之一。聚类旨在将数据集中的样本划分为不同的组,使得组内的样本相似度高,组间的相似度低。K-means聚类算法作为聚类算法中的一种经典方法,因其简单、高效的特性被广泛应用于各个领域。在本文中,我们将深入探讨K-means聚类算法,从基本原理到实际应用,以及算法的优化和实现方法。首先,
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比