LightOJ 1231 Coin Change (I)

1231 - Coin Change (I)
    PDF (English) Statistics Forum
Time Limit: 1 second(s) Memory Limit: 32 MB

In a strange shop there are n types of coins of value A1, A2 ... AnC1, C2, ... Cn denote the number of coins of value A1, A2 ... An respectively. You have to find the number of ways you can make K using the coins.

For example, suppose there are three coins 1, 2, 5 and we can use coin 1 at most 3 times, coin 2 at most 2 times and coin 5 at most 1 time. Then if K = 5 the possible ways are:

1112

122

5

So, 5 can be made in 3 ways.

Input

Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case starts with a line containing two integers n (1 ≤ n ≤ 50) and K (1 ≤ K ≤ 1000). The next line contains 2n integers, denoting A1, A2 ... An, C1, C2 ... Cn (1 ≤ Ai ≤ 100, 1 ≤ Ci ≤ 20). All Ai will be distinct.

Output

For each case, print the case number and the number of ways K can be made. Result can be large, so, print the result modulo 100000007.

Sample Input

Output for Sample Input

2

3 5

1 2 5 3 2 1

4 20

1 2 3 4 8 4 2 1

Case 1: 3

Case 2: 9

 

题意:给你n个物品的体积和数量,让你求有多少种组合能恰好装满M体积的背包

开始一直在想怎么用一维数组来捉,弄了半天没什么结果。

所以回归一般的DP,dp[i][j]表示前i种物品,组成j的容量有几种组法

枚举第i种物品的时候可以取一个,取两个,。。,最后别忘了,也可以不取


#include <cstdio>
#include <cstring>
using namespace std;

const int mod = 100000007;
const int maxn = 1010;
int dp[55][maxn];
int a[55], b[55];
int main()
{
    int t, n, cas = 1, m;
    scanf("%d", &t);
    while (t--){
        scanf("%d%d", &n, &m);
        for (int i = 1; i <= n; i++)
            scanf("%d", &a[i]);
        for (int i = 1; i <= n; i++)
            scanf("%d", &b[i]);
        memset (dp, 0, sizeof(dp));
        dp[0][0] = 1;
        for (int i = 1; i <= n; i++){
            for (int j = m; j >= 0; j--){
                for (int k = 1; k <= b[i]; k++){
                    if (j - k * a[i] >= 0)
                        dp[i][j] += dp[i - 1][j - k * a[i]];
                }
            }
            for (int j = 0; j <= m; j++){
                dp[i][j] += dp[i - 1][j];
                dp[i][j] %= mod;
            }
        }
        printf("Case %d: %d\n", cas++, dp[n][m]);
    }
    return 0;
}


你可能感兴趣的:(LightOJ 1231 Coin Change (I))