Big Number大数目 16

Big Number大数目

Problem Description

In manyapplications very large integers numbers are required. Some of theseapplications are using keys for secure transmission of data, encryption, etc.In this problem you are given a number, you have to determine the number ofdigits in the factorial of the number.

 在许多应用中非常大的整数数字是必需的。这些应用使用密钥数据,加密等安全传输在这个问题中,你将得到一个号码,则必须确定在数的阶乘的位数。

 

Input

Input consists ofseveral lines of integer numbers. The first line contains an integer n, whichis the number of cases to be tested, followed by n lines, one integer 1 ≤ n ≤107 on each line.

 输入由若干行整数数字。第一行包含一个整数n,这是要测试的情况下的数量,后跟n线路,一个整数1≤N≤107上的每一行。

Output

The outputcontains the number of digits in the factorial of the integers appearing in theinput.

 

输出包含的位数出现在输入的整数的阶乘的数目。

Sample Input

2

10

20

 

Sample Output

7

19

代码如下:

/* run this program using the console pauser or add your own getch, system("pause") or input loop */

#include<stdio.h>  
#include<math.h>  
//这个题的意思是:给你一个数,让你求出N!由多少位数构成,比如输出10,它的阶乖是3628800 由7位数构成,这时你要输出7;
//解题思路:
//1.可以暴力,N的阶乖的位数等于LOG10(N!)=LOG10(1)+.....LOG10(N);
//2.Stirling公式:n!与√(2πn) * n^n * e^(-n)的值十分接近
//故log10(n!) = log(n!) / log(10) = ( n*log(n) - n + 0.5*log(2*π*n))/log(n);
//
//解法一:
//LANGUAGE:C++
//CODE:
double reback(int n)  //计算阶乘的位数 
{  
	int i;
    double cnt=0;  
    for(i=2;i<=n;i++)  
    {  
        cnt+=log10(i);  //把求阶乘转化成加法运算 
    }  
    return cnt;  
}  
  
int main()  
{  
    int group,n;  
    scanf("%d",&group);  
    while(group--)  
    {  
        scanf("%d",&n);  
        printf("%d\n",(int)reback(n)+1);  
    }  
    return 0;  
}  


 

你可能感兴趣的:(Big Number大数目 16)