poj2553The Bottom of a Graph【tarjan中SCC出度是1】

Description

We will use the following (standard) definitions from graph theory. Let  V be a nonempty and finite set, its elements being called vertices (or nodes). Let  E be a subset of the Cartesian product  V×V, its elements being called edges. Then  G=(V,E) is called a directed graph. 
Let  n be a positive integer, and let  p=(e1,...,en) be a sequence of length  n of edges  ei∈E such that  ei=(vi,vi+1) for a sequence of vertices  (v1,...,vn+1). Then  p is called a path from vertex  v1 to vertex  vn+1 in  Gand we say that  vn+1 is reachable from  v1, writing  (v1→vn+1)
Here are some new definitions. A node  v in a graph  G=(V,E) is called a sink, if for every node  w in  G that is reachable from  vv is also reachable from  w. The bottom of a graph is the subset of all nodes that are sinks, i.e.,  bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.

Input

The input contains several test cases, each of which corresponds to a directed graph  G. Each test case starts with an integer number  v, denoting the number of vertices of  G=(V,E), where the vertices will be identified by the integer numbers in the set  V={1,...,v}. You may assume that  1<=v<=5000. That is followed by a non-negative integer  e and, thereafter,  e pairs of vertex identifiers  v1,w1,...,ve,we with the meaning that  (vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.

Output

For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.

Sample Input

3 3
1 3 2 3 3 1
2 1
1 2
0

Sample Output

1 3
2

Source

Ulm Local 2003

rt,题里问的就是这个意思,各种纠结的调了好久 1A的喜悦的难以言表的~~要不是因为从0开始还是从一开始这个问题(主要还是没注意模板的写法 (⊙﹏⊙)b)而且记得写文件就更好了

/*************
poj2553
2015.11.10
1324K	172MS	G++	2299B
*************/
#include <iostream>
#include<cstdio>
#include<stack>
#include<vector>
#include<cstring>
#include<algorithm>
using namespace std;
#define maxn 5005
vector<int>G[maxn];
int pre[maxn],lowlink[maxn],sccno[maxn],dfs_clock,scc_cnt;
stack<int>S;
int in0[maxn],out0[maxn];
int num[5006];
void dfs(int u)
{
    pre[u]=lowlink[u]=++dfs_clock;
    S.push(u);
    for(int i=0;i<G[u].size();i++)
    {
        int v=G[u][i];
        if(!pre[v])
        {
            dfs(v);
            lowlink[u]=min(lowlink[u],lowlink[v]);
        }
        else if(!sccno[v])
            lowlink[u]=min(lowlink[u],pre[v]);
    }
    if(lowlink[u]==pre[u])
    {
        scc_cnt++;
       // printf("序号是%d  ,里面有",scc_cnt);
        for(;;)
        {
            int x=S.top();S.pop();
            sccno[x]=scc_cnt;
            //printf("%d   ",x);
            if(x==u) break;
        }
    }
}
void find_scc(int n)
{
    dfs_clock=scc_cnt=0;
    memset(sccno,0,sizeof(sccno));
    memset(pre,0,sizeof(pre));
    for(int i=0;i<n;i++) if(!pre[i]) dfs(i);
}
int main()
{
   // freopen("cin.txt","r",stdin);
    int  n,m;
    while(~scanf("%d",&n))
    {
        if(n==0) break;
        scanf("%d",&m);
        for(int i=0;i<n;i++) G[i].clear();
        for(int i=0;i<m;i++)
        {
            int u,v;
            scanf("%d%d",&u,&v);u--;v--;
            G[u].push_back(v);
        }
        find_scc(n);
        for(int i=1;i<=scc_cnt;i++) in0[i]=out0[i]=1;
       // printf("scc_cnt=%d   ",scc_cnt);
        for(int u=0;u<n;u++)
        {
            for(int i=0;i<G[u].size();i++)
            {
                int v=G[u][i];
                if(sccno[u]!=sccno[v]) in0[sccno[v]]=out0[sccno[u]]=0;
            }
        }
        int a=0,cnt=0;
        for(int i=1;i<=scc_cnt;i++)
        {
            if(out0[i])
            {
               // printf("i=%d   ",i);
                for(int j=0;j<n;j++)
                {
                    if(sccno[j]==i)
                        num[cnt++]=j+1;
                }
            }
        }
        //printf("cnt=%d  ",cnt);
        if(cnt)
        {
            sort(num,num+cnt);
            printf("%d",num[0]);
            for(int i=1;i<cnt;i++) printf(" %d",num[i]);
        }
        printf("\n");
    }
    return 0;
}


你可能感兴趣的:(poj,Tarjan)