Apache Spark学习:利用Eclipse构建Spark集成开发环境

前一篇文章“ Apache Spark学习:将Spark部署到Hadoop 2.2.0上”介绍了如何使用Maven编译生成可直接运行在Hadoop 2.2.0上的Spark jar包,而本文则在此基础上, 介绍如何利用Eclipse构建Spark集成开发环境。 不建议大家使用eclipse开发spark程序和阅读源代码,推荐使用Intellij IDEA,具体参考文章: Apache Spark探秘:利用Intellij IDEA构建开发环境。

(1) 准备工作

在正式介绍之前,先要以下软硬件准备:

软件准备:

Eclipse Juno版本(4.2版本),可以直接点击这里下载:Eclipse 4.2

Scala 2.9.3版本,Window安装程序可以直接点击这里下载:Scala 2.9.3

Eclipse Scala IDE插件,可直接点击这里下载:Scala IDE(for Scala 2.9.x and Eclipse Juno)

硬件准备

装有Linux或者Windows操作系统的机器一台

(2) 构建Spark集成开发环境

我是在windows操作系统下操作的,流程如下:

步骤1:安装scala 2.9.3:直接点击安装即可。

步骤2:将Eclipse Scala IDE插件中features和plugins两个目录下的所有文件拷贝到Eclipse解压后对应的目录中

步骤3:重新启动Eclipse,点击eclipse右上角方框按钮,如下图所示,展开后,点击“Other….”,查看是否有“Scala”一项,有的话,直接点击打开,否则进行步骤4操作。

Apache Spark学习:利用Eclipse构建Spark集成开发环境_第1张图片

步骤4:在Eclipse中,依次选择“Help” –> “Install New Software…”,在打开的卡里填入http://download.scala-ide.org/sdk/e38/scala29/stable/site,并按回车键,可看到以下内容,选择前两项进行安装即可。(由于步骤3已经将jar包拷贝到eclipse中,安装很快,只是疏通一下)安装完后,重复操作一遍步骤3便可。

(3) 使用Scala语言开发Spark程序

在eclipse中,依次选择“File” –>“New” –> “Other…” –>  “Scala Wizard” –> “Scala Project”,创建一个Scala工程,并命名为“SparkScala”。

右击“SaprkScala”工程,选择“Properties”,在弹出的框中,按照下图所示,依次选择“Java Build Path” –>“Libraties” –>“Add External JARs…”,导入文章“Apache Spark学习:将Spark部署到Hadoop 2.2.0上”中给出的

assembly/target/scala-2.9.3/目录下的spark-assembly-0.8.1-incubating-hadoop2.2.0.jar,这个jar包也可以自己编译spark生成,放在spark目录下的assembly/target/scala-2.9.3/目录中。

Apache Spark学习:利用Eclipse构建Spark集成开发环境_第2张图片

跟创建Scala工程类似,在工程中增加一个Scala Class,命名为:WordCount,整个工程结构如下:

Apache Spark学习:利用Eclipse构建Spark集成开发环境_第3张图片

WordCount就是最经典的词频统计程序,它将统计输入目录中所有单词出现的总次数,Scala代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import org.apache.spark. _
import SparkContext. _
object WordCount {
   def main(args : Array[String]) {
     if (args.length ! = 3 ){
       println( "usage is org.test.WordCount <master> <input> <output>" )
       return
     }
     val sc = new SparkContext(args( 0 ), "WordCount" ,
     System.getenv( "SPARK_HOME" ), Seq(System.getenv( "SPARK_TEST_JAR" )))
     val textFile = sc.textFile(args( 1 ))
     val result = textFile.flatMap(line = > line.split( "\\s+" ))
         .map(word = > (word, 1 )).reduceByKey( _ + _ )
     result.saveAsTextFile(args( 2 ))
   }
}

在Scala工程中,右击“WordCount.scala”,选择“Export”,并在弹出框中选择“Java” –> “JAR File”,进而将该程序编译成jar包,可以起名为“spark-wordcount-in-scala.jar”,我导出的jar包下载地址是 spark-wordcount-in-scala.jar。

该WordCount程序接收三个参数,分别是master位置,HDFS输入目录和HDFS输出目录,为此,可编写run_spark_wordcount.sh脚本:

# 配置成YARN配置文件存放目录

export YARN_CONF_DIR=/opt/hadoop/yarn-client/etc/hadoop/

SPARK_JAR=./assembly/target/scala-2.9.3/spark-assembly-0.8.1-incubating-hadoop2.2.0.jar \

./spark-class org.apache.spark.deploy.yarn.Client \

–jar spark-wordcount-in-scala.jar \

–class WordCount \

–args yarn-standalone \

–args hdfs://hadoop-test/tmp/input \

–args hdfs:/hadoop-test/tmp/output \

–num-workers 1 \

–master-memory 2g \

–worker-memory 2g \

–worker-cores 2

需要注意以下几点:WordCount程序的输入参数通过“-args”指定,每个参数依次单独指定,第二个参数是HDFS上的输入目录,需要事先创建好,并上传几个文本文件,以便统计词频,第三个参数是HDFS上的输出目录,动态创建,运行前不能存在。

直接运行run_spark_wordcount.sh脚本即可得到运算结果。

在运行过程中,发现一个bug,org.apache.spark.deploy.yarn.Client有一个参数“–name”可以指定应用程序名称:

但是使用过程中,该参数会阻塞应用程序,查看源代码发现原来是个bug,该Bug已提交到Spark jira上:

1
2
3
4
5
6
7
8
9
10
11
12
// 位置:new-yarn/src/main/scala/org/apache/spark/deploy/yarn/ClientArguments.scala
         case ( "--queue" ) :: value :: tail = >
           amQueue = value
           args = tail
 
         case ( "--name" ) :: value :: tail = >
           appName = value
           args = tail //漏了这行代码,导致程序阻塞
 
         case ( "--addJars" ) :: value :: tail = >
           addJars = value
           args = tail

因此,大家先不要使用“–name”这个参数,或者修复这个bug,重新编译Spark。

(4) 使用Java语言开发Spark程序

方法跟普通的Java程序开发一样,只要将Spark开发程序包spark-assembly-0.8.1-incubating-hadoop2.2.0.jar作为三方依赖库即可。

(5) 总结

初步试用Spark On YARN过程中,发现问题还是非常多,使用起来非常不方便,门槛还是很高,远不如Spark On Mesos成熟。

原创文章,转载请注明: 转载自董的博客

本文链接地址: http://dongxicheng.org/framework-on-yarn/spark-eclipse-ide/

你可能感兴趣的:(apache,eclipse,spark,搭建,集成开发环境)