关于二次排序主要涉及到这么几个东西:
在0.20.0 以前使用的是
setOutputkeyComparatorClass
setOutputValueGroupingComparator
在0.20.0以后使用是
job.setPartitionerClass(Partitioner p);
job.setSortComparatorClass(RawComparator c);
job.setGroupingComparatorClass(RawComparator c);
下面的例子里面只用到了 setGroupingComparatorClass
import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.WritableComparable; import org.apache.hadoop.io.WritableComparator; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Partitioner; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; public class SecondarySort { //自己定义的key类应该实现WritableComparable接口 public static class IntPair implements WritableComparable<IntPair> { int first; int second; /** * Set the left and right values. */ public void set(int left, int right) { first = left; second = right; } public int getFirst() { return first; } public int getSecond() { return second; } @Override //反序列化,从流中的二进制转换成IntPair public void readFields(DataInput in) throws IOException { // TODO Auto-generated method stub first = in.readInt(); second = in.readInt(); } @Override //序列化,将IntPair转化成使用流传送的二进制 public void write(DataOutput out) throws IOException { // TODO Auto-generated method stub out.writeInt(first); out.writeInt(second); } @Override //key的比较 public int compareTo(IntPair o) { // TODO Auto-generated method stub if (first != o.first) { return first < o.first ? -1 : 1; } else if (second != o.second) { return second < o.second ? -1 : 1; } else { return 0; } } //新定义类应该重写的两个方法 @Override //The hashCode() method is used by the HashPartitioner (the default partitioner in MapReduce) public int hashCode() { return first * 157 + second; } @Override public boolean equals(Object right) { if (right == null) return false; if (this == right) return true; if (right instanceof IntPair) { IntPair r = (IntPair) right; return r.first == first && r.second == second; } else { return false; } } } /** * 分区函数类。根据first确定Partition。 */ public static class FirstPartitioner extends Partitioner<IntPair, IntWritable> { @Override public int getPartition(IntPair key, IntWritable value,int numPartitions) { return Math.abs(key.getFirst() * 127) % numPartitions; } } /** * 分组函数类。只要first相同就属于同一个组。 */ /*//第一种方法,实现接口RawComparator public static class GroupingComparator implements RawComparator<IntPair> { @Override public int compare(IntPair o1, IntPair o2) { int l = o1.getFirst(); int r = o2.getFirst(); return l == r ? 0 : (l < r ? -1 : 1); } @Override //一个字节一个字节的比,直到找到一个不相同的字节,然后比这个字节的大小作为两个字节流的大小比较结果。 public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2){ // TODO Auto-generated method stub return WritableComparator.compareBytes(b1, s1, Integer.SIZE/8, b2, s2, Integer.SIZE/8); } }*/ //第二种方法,继承WritableComparator public static class GroupingComparator extends WritableComparator { protected GroupingComparator() { super(IntPair.class, true); } @Override //Compare two WritableComparables. public int compare(WritableComparable w1, WritableComparable w2) { IntPair ip1 = (IntPair) w1; IntPair ip2 = (IntPair) w2; int l = ip1.getFirst(); int r = ip2.getFirst(); return l == r ? 0 : (l < r ? -1 : 1); } } // 自定义map public static class Map extends Mapper<LongWritable, Text, IntPair, IntWritable> { private final IntPair intkey = new IntPair(); private final IntWritable intvalue = new IntWritable(); public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); StringTokenizer tokenizer = new StringTokenizer(line); int left = 0; int right = 0; if (tokenizer.hasMoreTokens()) { left = Integer.parseInt(tokenizer.nextToken()); if (tokenizer.hasMoreTokens()) right = Integer.parseInt(tokenizer.nextToken()); intkey.set(left, right); intvalue.set(right); context.write(intkey, intvalue); } } } // 自定义reduce // public static class Reduce extends Reducer<IntPair, IntWritable, Text, IntWritable> { private final Text left = new Text(); private static final Text SEPARATOR = new Text("------------------------------------------------"); public void reduce(IntPair key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException { context.write(SEPARATOR, null); left.set(Integer.toString(key.getFirst())); for (IntWritable val : values) { context.write(left, val); } } } /** * @param args */ public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException { // TODO Auto-generated method stub // 读取hadoop配置 Configuration conf = new Configuration(); // 实例化一道作业 Job job = new Job(conf, "secondarysort"); job.setJarByClass(SecondarySort.class); // Mapper类型 job.setMapperClass(Map.class); // 不再需要Combiner类型,因为Combiner的输出类型<Text, IntWritable>对Reduce的输入类型<IntPair, IntWritable>不适用 //job.setCombinerClass(Reduce.class); // Reducer类型 job.setReducerClass(Reduce.class); // 分区函数 job.setPartitionerClass(FirstPartitioner.class); // 分组函数 job.setGroupingComparatorClass(GroupingComparator.class); // map 输出Key的类型 job.setMapOutputKeyClass(IntPair.class); // map输出Value的类型 job.setMapOutputValueClass(IntWritable.class); // rduce输出Key的类型,是Text,因为使用的OutputFormatClass是TextOutputFormat job.setOutputKeyClass(Text.class); // rduce输出Value的类型 job.setOutputValueClass(IntWritable.class); // 将输入的数据集分割成小数据块splites,同时提供一个RecordReder的实现。 job.setInputFormatClass(TextInputFormat.class); // 提供一个RecordWriter的实现,负责数据输出。 job.setOutputFormatClass(TextOutputFormat.class); // 输入hdfs路径 FileInputFormat.setInputPaths(job, new Path(args[0])); // 输出hdfs路径 FileOutputFormat.setOutputPath(job, new Path(args[1])); // 提交job System.exit(job.waitForCompletion(true) ? 0 : 1); } }