http://03045102.blog.163.com/blog/static/18380119200942112636623/
前:
1、如果是正交矩阵,则它的转置就是它的逆,
2、boost下面有库(uBLAS) Basic Linear Algebra Library 基本的线性代数都有了,你去看看吧 www.boost.org
3、对于2x2 3x3 公式,http://www.dr-lex.be/random/matrix_inv.html
算法介绍
矩阵求逆在3D程序中很常见,主要应用于求Billboard矩阵。按照定义的计算方法乘法运算,严重影响了性能。在需要大量Billboard矩阵运算时,矩阵求逆的优化能极大提高性能。这里要介绍的矩阵求逆算法称为全选主元高斯-约旦法。
高斯-约旦法(全选主元)求逆的步骤如下:
首先,对于 k 从 0 到 n - 1 作如下几步:
最后,根据在全选主元过程中所记录的行、列交换的信息进行恢复,恢复的原则如下:在全选主元过程中,先交换的行(列)后进行恢复;原来的行(列)交换用列(行)交换来恢复。
实现(4阶矩阵)
float Inverse(CLAYMATRIX& mOut, const CLAYMATRIX& rhs)
{
CLAYMATRIX m(rhs);
DWORD is[4];
DWORD js[4];
float fDet = 1.0f;
int f = 1;
for (int k = 0; k < 4; k ++)
{
// 第一步,全选主元
float fMax = 0.0f;
for (DWORD i = k; i < 4; i ++)
{
for (DWORD j = k; j < 4; j ++)
{
const float f = Abs(m(i, j));
if (f > fMax)
{
fMax = f;
is[k] = i;
js[k] = j;
}
}
}
if (Abs(fMax) < 0.0001f)
return 0;
if (is[k] != k)
{
f = -f;
swap(m(k, 0), m(is[k], 0));
swap(m(k, 1), m(is[k], 1));
swap(m(k, 2), m(is[k], 2));
swap(m(k, 3), m(is[k], 3));
}
if (js[k] != k)
{
f = -f;
swap(m(0, k), m(0, js[k]));
swap(m(1, k), m(1, js[k]));
swap(m(2, k), m(2, js[k]));
swap(m(3, k), m(3, js[k]));
}
// 计算行列值
fDet *= m(k, k);
// 计算逆矩阵
// 第二步
m(k, k) = 1.0f / m(k, k);
// 第三步
for (DWORD j = 0; j < 4; j ++)
{
if (j != k)
m(k, j) *= m(k, k);
}
// 第四步
for (DWORD i = 0; i < 4; i ++)
{
if (i != k)
{
for (j = 0; j < 4; j ++)
{
if (j != k)
m(i, j) = m(i, j) - m(i, k) * m(k, j);
}
}
}
// 第五步
for (i = 0; i < 4; i ++)
{
if (i != k)
m(i, k) *= -m(k, k);
}
}
for (k = 3; k >= 0; k --)
{
if (js[k] != k)
{
swap(m(k, 0), m(js[k], 0));
swap(m(k, 1), m(js[k], 1));
swap(m(k, 2), m(js[k], 2));
swap(m(k, 3), m(js[k], 3));
}
if (is[k] != k)
{
swap(m(0, k), m(0, is[k]));
swap(m(1, k), m(1, is[k]));
swap(m(2, k), m(2, is[k]));
swap(m(3, k), m(3, is[k]));
}
}
mOut = m;
return fDet * f;
}
比较
原算法 | 原算法(经过高度优化) | 新算法 | |
---|---|---|---|
加法次数 | 103 | 61 | 39 |
乘法次数 | 170 | 116 | 69 |
需要额外空间 | 16 * sizeof(float) | 34 * sizeof(float) | 25 * sizeof(float) |
结果不言而喻吧。