机器学习降维算法一:PCA (Principal Component Analysis)

http://www.cnblogs.com/xbinworld/archive/2011/11/24/pca.html


言:

机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中。降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式。 y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的)。f可能是显式的或隐式的、线性的或非线性的。

当然还有一大类方法本质上也是做了降维,叫做feature selection,目的是从原始的数据feature集合中挑选一部分作为数据的表达。

目前大部分降维算法处理向量表达的数据,也有一些降维算法处理高阶张量表达的数据。

之所以使用降维后的数据表示是因为:

(1)在原始的高维空间中,包含有冗余信息以及噪音信息,在实际应用例如图像识别中造成了误差,降低了准确率;而通过降维,我们希望减少冗余信息所造成的误差,提高识别(或其他应用)的精度。

(2)或者希望通过降维算法来寻找数据内部的本质结构特征。

(3)通过降维来加速后续计算的速度

(4)还有其他很多目的,如解决数据的sparse问题

在很多算法中,降维算法成为了数据预处理的一部分,如PCA。事实上,有一些算法如果没有降维预处理,其实是很难得到很好的效果的。


如果你需要处理数据,但是数据原来的属性又不一定需要全部保留,那么PCA也许是一个选择。

 

主成分分析算法(PCA

Principal Component Analysis(PCA)是最常用的线性降维方法,它的目标是通过某种线性投影,将高维的数据映射到低维的空间中表示,并期望在所投影的维度上数据的方差最大,以此使用较少的数据维度,同时保留住较多的原数据点的特性。

通俗的理解,如果把所有的点都映射到一起,那么几乎所有的信息(如点和点之间的距离关系)都丢失了,而如果映射后方差尽可能的大,那么数据点则会分散开来,以此来保留更多的信息。可以证明,PCA是丢失原始数据信息最少的一种线性降维方式。(实际上就是最接近原始数据,但是PCA并不试图去探索数据内在结构)

n维向量w为目标子空间的一个坐标轴方向(称为映射向量),最大化数据映射后的方差,有:

机器学习降维算法一:PCA (Principal Component Analysis)_第1张图片

其中m是数据实例的个数, xi是数据实例i的向量表达, x拔是所有数据实例的平均向量。定义W为包含所有映射向量为列向量的矩阵,经过线性代数变换,可以得到如下优化目标函数:

   W'W=I是说希望结果的每一个feature都正交,这样每一维度之间不会有冗余信息。

 

 其中tr表示矩阵的迹,A是数据协方差矩阵。

容易得到最优的W是由数据协方差矩阵前k个最大的特征值对应的特征向量作为列向量构成的。这些特征向量形成一组正交基并且最好地保留了数据中的信息。

PCA的输出就是Y = W'X,由X的原始维度降低到了k维。因此不知道推导也无所谓,只要会算就行,注意X需要均值化。

来看个例子:

 

机器学习降维算法一:PCA (Principal Component Analysis)_第2张图片


当使用1个特征向量的时候,3的基本轮廓已经保留下来了,特征向量使用的越多就越与原始数据接近

   

PCA追求的是在降维之后能够最大化保持数据的内在信息,并通过衡量在投影方向上的数据方差的大小来衡量该方向的重要性。但是这样投影以后对数据的区分作用并不大,反而可能使得数据点揉杂在一起无法区分。这也是PCA存在的最大一个问题,这导致使用PCA在很多情况下的分类效果并不好。具体可以看下图所示,若使用PCA将数据点投影至一维空间上时,PCA会选择2轴,这使得原本很容易区分的两簇点被揉杂在一起变得无法区分;而这时若选择1轴将会得到很好的区分结果。

机器学习降维算法一:PCA (Principal Component Analysis)_第3张图片

   

Discriminant Analysis所追求的目标与PCA不同,不是希望保持数据最多的信息,而是希望数据在降维后能够很容易地被区分开来。后面会介绍LDA的方法,是另一种常见的线性降维方法。另外一些非线性的降维方法利用数据点的局部性质,也可以做到比较好地区分结果,例如LLELaplacian Eigenmap等。以后会介绍。


你可能感兴趣的:(机器学习降维算法一:PCA (Principal Component Analysis))