smg啊这种水题调了3h……前途一片灰暗……
对于每个圆,它能够把前面的圆覆盖,同时会被后面的圆覆盖,它所贡献的周长是它自身周长减去被覆盖的部分,而被覆盖的部分是可以算出来的,用当前圆暴力和后面的圆全部求个交。对于一个圆,它被另外一个圆给交了,其被覆盖的圆弧的圆心角是确定的。也就是说,这个圆被覆盖的总弧度可以用各个圆心角的并得到。每被覆盖一次,就可以得到一个被覆盖的弧度的区间。在平面直角坐标系上这个区间是 [−π,π] 的,可以把它加上 pi ,这样会好处理些。
那么就把问题转化成了一些弧度区间的并。这个另开一篇文章讲好了。
求并的时间是 O(nlogn) 的,故总时间是 O(n2logn) 的。
一开始把GetAng的返回值写成了bool
要注意圆覆盖的情况和同心圆的情况。这样用余弦定理算圆心角的时候会爆NaN。
woc用一个错误的标程对着调了几h
另外这个blog下的程序似乎是有错误的,可以被卡掉。
http://blog.csdn.net/jiangyuze831/article/details/40580789
my code:
#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=a,_=b;i<=_;i++)
#define per(i,a,b) for(int i=a,_=b;i>=_;i--)
#define pii pair<double , double>
#define mp make_pair
#define maxn 1007
inline int rd() {
char c = getchar();
while (!isdigit(c)) c = getchar() ; int x = c - '0';
while (isdigit(c = getchar())) x = x * 10 + c - '0';
return x;
}
const double pi = acos(-1.0);
const double eps = 0;
typedef vector<pii>::iterator iter_pii;
template<class T> inline void upmax(T&a , T b) { if (a < b) a = b ; }
template<class T> inline T sqr(T x) { return x * x ; }
inline int fcmp(double a , double b) {
if (fabs(a - b) <= eps) return 0;
if (a < b - eps) return -1;
return 1;
}
struct Point {
double x , y;
Point() { x = y = 0 ; }
Point(double x , double y):x(x) , y(y) { }
inline double GetAng() { return atan2(y , x); }
};
Point operator-(Point a , Point b) { return Point(a.x - b.x , a.y - b.y) ; }
inline double GetPointDis(Point a , Point b) { return sqrt(sqr(a.x - b.x) + sqr(a.y - b.y)) ; }
struct Circle {
Point o;
double r;
Circle() {}
Circle(double r , Point o):r(r) , o(o) { }
}circle[maxn];
int n;
vector<pii> tmp;
void input() {
n = rd();
rep (i , 1 , n) {
double r , x , y;
scanf("%lf%lf%lf" , &r , &x , &y);
circle[i] = Circle(r , Point(x , y));
}
}
void CircleIntersect(Circle&a , Circle&b) {
double dis = GetPointDis(a.o , b.o);
if (fcmp(dis , a.r + b.r) > 0 || fcmp(dis , a.r - b.r) < 0) return;
if (fcmp(dis , b.r - a.r) <= 0 || (dis == 0 && a.r == b.r)) {
tmp.push_back(mp(0 , pi + pi));
return;
}
//assert(a.r != 0);
//assert(dis != 0);
double theta = (b.o - a.o).GetAng() + pi ,
delta = acos((sqr(a.r) + sqr(dis) - sqr(b.r)) / (2.0 * a.r * dis));
if (theta < delta) {
tmp.push_back(mp(0 , theta + delta));
tmp.push_back(mp(theta - delta + pi + pi , pi + pi));
}
else if (theta + delta > pi + pi) {
tmp.push_back(mp(theta - delta , pi + pi));
tmp.push_back(mp(0 , theta + delta - pi - pi));
}
else {
tmp.push_back(mp(theta - delta , theta + delta));
}
}
double calc(int i) {
tmp.clear();
rep (j , i + 1 , n)
CircleIntersect(circle[i] , circle[j]);
sort(tmp.begin() , tmp.end());
double res = 0.0 , st = 0.0 , ed = 0.0;
for (iter_pii it = tmp.begin() ; it != tmp.end() ; it ++)
if (fcmp(it -> first , ed) > 0)
res += ed - st , st = it -> first , ed = it -> second;
else
ed = max(ed , it -> second);
res += ed - st;
return (pi + pi - res) * circle[i].r;
}
void solve() {
double ans = 0;
per (i , n , 1)
ans += calc(i);
printf("%.3lf\n" , ans);
}
int main() {
#ifndef ONLINE_JUDGE
freopen("data.txt" , "r" , stdin);
freopen("data.out" , "w" , stdout);
#endif
input();
solve();
return 0;
}