一开始以为一个单调队列就搞定了。。。后来发现好像根本不是那么一回事QAQ
这题其实还是挺有意思的。。。
参考了一下claris的题解>.<
http://www.cnblogs.com/clrs97/p/4582835.html
首先要求出每个点的最大值区间和最小值区间,然后可以得到答案区间之间的不等关系,再枚举左端点,根据不等式在线段树里面查询。
#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define per(i,a,b) for(int i=a;i>=b;i--)
#define For(i,a,b) for(int i=a;i< b;i++)
#define pii pair<int , int>
#define mp make_pair
#define pb push_back
#define pos first
#define rgt second
#define maxn 500003
#define maxm 3000003
#define inf 0x7fffffff
inline int rd() {
char c = getchar();
while (!isdigit(c) && c != '-') c = getchar() ;
int x = 0 , f = 1;
if (c == '-') f = -1 ; else x = c - '0';
while (isdigit(c = getchar())) x = x * 10 + c - '0';
return x * f;
}
inline void upmax(int&a , int b) { if (a < b) a = b ; }
typedef int arr[maxn];
typedef int seg[maxm];
int n , ans_len , ans_st;
arr a , lmx , rmx , lmn , rmn;
vector<pii> G[maxn] , H[maxn];
struct SegTree{
#define T int u = 1 , int l = 1 , int r = n
#define L lc , l , m
#define R rc , m + 1 , r
#define lc (u << 1)
#define rc (u << 1 | 1)
seg val;
int ql , qr , v;
inline void C() { memset(val , 0 , sizeof val) ; }
void modi(T) {
if (l == r)
{ val[u] = v ; return ; }
int m = (l + r) >> 1;
if (ql <= m) modi(L);
else modi(R);
val[u] = max(val[lc] , val[rc]);
}
int que(T) {
if (ql <= l && r <= qr)
return val[u];
int m = (l + r) >> 1 , ret = -inf;
if (ql <= m) upmax(ret , que(L));
if (qr > m) upmax(ret , que(R));
return ret;
}
inline void M(int l , int v) {
ql = l , this -> v = v;
modi();
}
inline int Q(int l , int r) {
ql = l , qr = r;
return que();
}
}num;
void input() {
n = rd();
rep(i , 1 , n) a[i] = rd();
}
void get_lr() {
static arr q;
static int t;
t = 0 , q[0] = 0;
rep(i , 1 , n) {
while (t && a[q[t]] > a[i]) t --;
lmn[i] = q[t] + 1 , q[++ t] = i;
}
t = 0 , q[0] = 0;
rep(i , 1 , n) {
while (t && a[q[t]] < a[i]) t --;
lmx[i] = q[t] + 1 , q[++ t] = i;
}
t = 0 , q[0] = n + 1;
per(i , n , 1) {
while (t && a[q[t]] > a[i]) t --;
rmn[i] = q[t] - 1 , q[++ t] = i;
}
t = 0 , q[0] = n + 1;
per(i , n , 1) {
while (t && a[q[t]] < a[i]) t --;
rmx[i] = q[t] - 1 , q[++ t] = i;
}
}
void work() {
rep(i , 1 , n) G[i].clear();
rep(i , 1 , n) H[i].clear();
rep(i , 1 , n) G[lmn[i]].pb(mp(i , rmn[i]));
rep(i , 1 , n) H[lmx[i]].pb(mp(i , rmx[i]));
rep(i , 1 , n) {
For(j , 0 , G[i].size()) num.M(G[i][j].pos , G[i][j].rgt);
For(j , 0 , H[i].size()) {
int p = H[i][j].pos , r = H[i][j].rgt;
int t = num.Q(i , r);
if (t < p) continue;
int l = min(r , t) - i + 1;
if ((l > ans_len) || (l == ans_len && i < ans_st))
ans_len = l , ans_st = i;
}
}
}
void solve() {
get_lr();
work();
rep(i , 1 , n) swap(lmx[i] , lmn[i]);
rep(i , 1 , n) swap(rmx[i] , rmn[i]);
num.C();
work();
printf("%d %d\n" , ans_len , ans_st);
}
int main() {
#ifndef ONLINE_JUDGE
freopen("data.txt" , "r" , stdin);
freopen("data.out" , "w" , stdout);
#endif
input();
solve();
return 0;
}