- 卷积神经网络
亿只小灿灿
Python算法与数据结构人工智能cnn人工智能神经网络
一、引言在当今人工智能的浪潮中,卷积神经网络(ConvolutionalNeuralNetwork,CNN)无疑是一颗璀璨的明星。它在图像识别、语音处理、自然语言处理等众多领域取得了巨大的成功,极大地推动了人工智能技术的发展。那么,什么是卷积神经网络?它的算法原理是什么?本文将深入探讨这些问题,并通过Python代码实现一个简单的卷积神经网络,以帮助读者更好地理解和掌握这一强大的技术。二、卷积神经
- 本地文字识别系统
yanyvkun1
其他
本地文字识别系统,可把图片转换为文字,也可以截图转换文字,需要的拿走不谢。功能简介支持图片转文字和截图转文字的高效本地识别工具,无需联网即可快速提取图片中的文本内容,适用于文档处理、资料整理等多种场景。核心特点本地运行:隐私安全有保障,无需上传数据到云端多场景适配:支持导入图片文件或直接截图识别高精度转换:准确提取印刷体、手写体(部分支持)文字便捷操作:简洁界面一键转换,结果可编辑导出适用人群需要
- Python编程:ISP中的白平衡(White Balance)
倔强老吕
C++与python交互编程pythonISP白平衡
白平衡(WhiteBalance)是图像信号处理(ISP)中的关键步骤,用于消除光源色温对图像颜色的影响,使白色物体在不同光照条件下都能呈现真实的白色。白平衡的基本原理白平衡通过调整图像中R、G、B三个通道的增益,使得在特定光源下白色物体能够呈现中性色(R=G=B)。主要概念色温:表示光源颜色的物理量,单位是开尔文(K)灰色世界假设:认为自然场景的平均反射率是中性灰色完美反射体假设:认为图像中最亮
- Python编程:使用 YOLO 目标检测
倔强老吕
python开发语言
YOLO(YouOnlyLookOnce)是一种基于深度学习的实时目标检测算法,由JosephRedmon等人于2016年首次提出。与传统的两阶段目标检测方法(如R-CNN系列)不同,YOLO将目标检测任务视为一个单一的回归问题,直接在图像上进行一次推理即可预测边界框和类别概率。YOLO的核心思想单次前向传播(SingleShotDetection):YOLO只需对输入图像进行一次神经网络推理,就
- Windows如何安装ComfyUI
俊偉
stablediffusionagicomfyui
ComfyUI是一个用于生成和管理文本到图像(Text-to-Image)的开源项目,基于StableDiffusion模型。它提供了图形用户界面(GUI),使得使用AI生成图像变得更加简单和直观。要在Windows上安装ComfyUI,你可以按照以下步骤进行操作。前提条件1.Python3.10+:ComfyUI需要Python3.10或更高版本。你可以从Python官方网站下载并安装最新版本的
- DAY 41 简单CNN
yizhimie37
python训练营打卡笔记深度学习
@浙大疏锦行https://blog.csdn.net/weixin_45655710知识回顾数据增强卷积神经网络定义的写法batch归一化:调整一个批次的分布,常用与图像数据特征图:只有卷积操作输出的才叫特征图调度器:直接修改基础学习率卷积操作常见流程如下:1.输入→卷积层→Batch归一化层(可选)→池化层→激活函数→下一层Flatten->Dense(withDropout,可选)->Den
- DAY 43 复习日
yizhimie37
python训练营打卡笔记深度学习
@浙大疏锦行https://blog.csdn.net/weixin_45655710第一步:寻找并准备图像数据集在Kaggle等平台上,你可以找到大量用于图像分类任务的数据集,例如英特尔图像分类数据集(IntelImageClassification)或手写数字识别数据集(DigitRecognizer)。对于初学者,一个更便捷的选择是使用像TensorFlow或PyTorch这样深度学习框架内
- 免费实时AI图片编辑工具-多模态大模型:GPT-4o、grok、豆包、BAGEL、MagicQuill、OmniGen2
loong_XL
AIGCaigc
纯自然语言对话实现图像编辑;参考https://zhuanlan.zhihu.com/p/1890036563586577897GPT-4ohttps://chatgpt.com/geminihttps://gemini.google.com/grokhttps://grok.com/?referrer=website
- k230使用摄像头
专一的咸鱼哥
k230python
k230使用摄像头一.摄像头基础知识1.图像传感器2.分辨率和帧率3.焦距和视场角4.像素格式5.镜像和翻转6.曝光和白平衡二.Sensor模块1.reset2.set_framesize3.set_pixformat4.set_hmirror5.set_vflip6.run7.stop8.snapshot三.Display模块1.初始化init1.1.type1.2.LAYER1.3.flag2
- 点云从入门到精通技术详解100篇-点云滤波算法及单木信息提取
格图素书
人工智能
目录知识储备点云滤波算法及单木信息提取点云条件滤波单木信息提取1.点云预处理2.点云密度计算3.密度阈值筛选4.骨架提取5.骨架细化优化方向前言国内外研究现状激光雷达研究现状点云数据的滤波算法研究现状单木分割应用现状LiDAR工作原理与点云数据的组成2.1LiDAR系统的内部结构2.1.1激光测距单元2.1.2光学机械扫描单元2.1.3惯性导航系统INS2.1.4动态差分GPS2.2定位原理2.3
- 图像采集卡与视频采集卡的主要区别对比
qq_52609913
数码相机
图像采集卡和视频采集卡的核心区别在于它们的设计目标、处理对象和典型应用场景。尽管名称相似,且有时功能会有重叠(尤其是高端设备),但它们侧重点不同:以下是主要区别:1.处理对象与目标图像采集卡:主要目标是高速、高精度地捕获单帧或连续多帧静态图像。它关注的是单张图片的质量、细节、分辨率和精确性。常用于需要分析图像内容而非连续观看流畅视频流的场景。视频采集卡:主要目标是实时、连续地捕获动态视频流。它关注
- Python HTTP日志分析:Nginx/Apache日志的Python解析
华科℡云
网络协议负载均衡运维
Web服务器日志是监控流量模式、性能瓶颈及安全威胁的关键数据源。Python凭借其丰富的库生态,可高效解析Nginx与Apache的日志格式,实现结构化数据提取与分析。日志格式解析基础Nginx默认采用combined格式,字段包括:$remote_addr(客户端IP)、$time_local(时间戳)、$request(请求方法+URL+协议)、$status(HTTP状态码)、$body_b
- Midscene.js 安装与配置指南
孙爽知Kody
Midscene.js安装与配置指南midsceneLetAIbeyourbrowseroperator.项目地址:https://gitcode.com/gh_mirrors/mid/midscene1.项目基础介绍Midscene.js是一个开源项目,旨在通过AI驱动浏览器自动化操作。用户可以使用自然语言描述任务需求,Midscene.js将自动执行相应的浏览器操作,如数据提取、页面验证等。该
- Java-Matcher类
Lowjin_
Java开发语言java
Matcher类是Java正则表达式API的核心组件之一(位于java.util.regex包),用于执行复杂的字符串匹配操作。它与Pattern类配合使用,提供查找、替换、分组提取等功能。1.Matcher类的作用对输入字符串执行匹配操作(查找、替换等)支持分组提取(通过()捕获的子表达式)提供位置信息(匹配的起始和结束索引)支持多次匹配和重置2.创建Matcher对象Matcher对象必须通过
- Python个人学习基础笔记-3.爬虫(1)
孜宸润泽
python学习笔记
一.爬虫的定义爬虫(crawler/spider)是模拟浏览器行为,按照编写规则,自动接收网页信息的工具。通常而言爬虫首先从初始URL集选择URL,向目标网页发起请求,获取网页的HTML源码,然后将获取的数据进行解析过滤,保存我们所需要的标题、内容等,最后提取新的URL加入待爬序列。爬虫常见所需要的库包括Request库、BeautifulSoup4库、Scrapy库和Selenium库等。二.R
- AEPR人像磨皮润肤美容插件的使用指南
觉昧
本文还有配套的精品资源,点击获取简介:AEPR人像磨皮润肤美容插件是一款结合AdobeAfterEffects和Photoshop的专业图像处理工具,用于视频和图像后期制作。该插件简化了人像美容过程,提供美白、磨皮和润色功能,帮助用户获得理想的视觉美感。通过使用该插件,用户能够轻松改善肤色和皮肤质地,而高斯模糊、斑点修复和色彩平衡调整等技术则保证了皮肤质感的自然与细腻。为了实现最佳效果,用户需要遵
- 布线后优化(PostRoute Optimization)解析
weixin_45371279
innovus
AboutPostRouteOptimization一、PostRoute优化的核心功能与默认行为在PostRoute模式下,软件默认执行以下操作(除非手动指定其他目标):违规修复优先级:首先处理寄存器到寄存器(Reg2Reg)路径及寄存器到时钟(Reg2Clock)路径组。其次处理默认路径组的建立时间(Setup)违规和设计规则违规(DRV)。技术流程:RC参数提取:计算布线后的寄生电阻(R)和
- 机器视觉_图像算法(六)——形状矩(Hu)
智能之心
#机器视觉_图像算法形状矩opencv
图像形状矩:一个从一幅数字图形中计算出来的矩集,通常描述了该图像形状的全局特征,并提供了大量的关于该图像不同类型的几何特性信息,比如大小、位置、方向及形状等。一阶矩与形状有关,二阶矩显示曲线围绕直线平均值的扩展程度,三阶矩则是关于平均值的对称性的测量。由二阶矩和三阶矩可以导出一组共7个不变矩。而不变矩是图像的统计特性,满足平移、伸缩、旋转均不变的不变性,在图像识别领域得到了广泛的应用。一般由mom
- 基于opencv的鱼群检测和数量统计识别鱼群密度带界面
完整项目点文末名片查看获取一、项目简介本项目旨在通过计算机视觉技术,实现对视频中鱼类数量的自动检测与计数。利用OpenCV库进行图像处理,包括背景减除、形态学操作、轮廓检测等步骤,最终在视频帧中标记出鱼类并统计其数量。该系统可广泛应用于水产养殖、生态监测等领域,有助于提高工作效率和数据准确性。二、环境准备在开始项目之前,需要确保以下环境和工具已安装:Python:推荐使用Python3.6及以上版
- 道路交通标志检测数据集-智能地图与导航 交通监控与执法 智慧城市交通管理-2,000 张图像
cver123
数据集智慧城市人工智能目标跟踪计算机视觉目标检测
道路交通标志检测数据集已发布目标检测数据集合集(持续更新)道路交通标志检测数据集介绍数据集概览包含类别应用场景数据样本展示YOLOv8训练实战1.环境配置安装YOLOv8官方库ultralytics2.数据准备2.1数据标注格式(YOLO)2.2文件结构示例2.3创建data.yaml配置文件3.模型训练关键参数补充说明:4.模型验证与测试4.1验证模型性能关键参数详解常用可选参数典型输出指标4.
- 【图像处理入门】12. 综合项目与进阶:超分辨率、医学分割与工业检测
小米玄戒Andrew
图像处理:从入门到专家图像处理人工智能深度学习算法python计算机视觉CV
摘要本周将聚焦三个高价值的综合项目,打通传统算法与深度学习的技术壁垒。通过图像超分辨率重建对比传统方法与深度学习方案,掌握医学图像分割的U-Net实现,设计工业缺陷检测的完整流水线。每个项目均包含原理解析、代码实现与性能优化,帮助读者从“技术应用”迈向“系统设计”。一、项目1:图像超分辨率重建(从模糊到清晰的跨越)1.技术背景与核心指标超分辨率(SR)是通过算法将低分辨率(LR)图像恢复为高分辨率
- 基于MFC的遥感图像匹配程序设计
HH予
嵌入式驱动工程项目开发mfcc++
基于MFC的遥感图像匹配程序设计下面我将为你设计一个使用MFC实现的遥感图像匹配程序,能够显示图片并在图上标注匹配点位置,支持地面点坐标的输入和输出。程序框架设计1.创建MFC项目使用VisualStudio创建一个MFC应用程序项目选择"单文档"界面勾选"文档/视图体系结构支持"2.主界面设计//在CMainFrame中添加以下成员变量classCMainFrame:publicCFrameWn
- Python 常用正则表达式大全
朱公子的Note
python爬虫正则表达式
你是否在写Python爬虫时,总是卡在“正则提取”这一步?明明页面源码已经拿到,却怎么也匹配不到目标数据……不是提取失败,就是提取不全,搞得调试半天还抓不到核心字段?别急!今天我们就来一次**“正则一网打尽”**,专为爬虫而生的表达式宝典,让你写起爬虫来如虎添翼!在当下数据驱动时代,网络数据是企业的“金矿”,而Python爬虫则是挖掘这金矿的“利器”!从电商价格到社交媒体评论,爬虫技术让数据采集变
- OpenCV CUDA模块设备层-----线性插值函数log()
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述该函数用于创建线性插值访问器,支持对GPU内存中的图像数据进行双线性插值采样。主要应用于图像缩放、旋转等几何变换中需要亚像素级精度的场景。为输入图像构造一个基于“双线性插值”的访问器对象LinearInterPtrSz,可以在CUDA核函数中按需访问缩放后的像素值
- 基于迁移学习的ResNet50模型实现石榴病害数据集多分类图片预测
深度学习乐园
深度学习实战项目迁移学习分类人工智能
完整源码项目包获取→点击文章末尾名片!番石榴病害数据集背景描述番石榴(Psidiumguajava)是南亚的主要作物,尤其是在孟加拉国。它富含维生素C和纤维,支持区域经济和营养。不幸的是,番石榴生产受到降低产量的疾病的威胁。该数据集旨在帮助开发用于番石榴果实早期病害检测的机器学习模型,帮助保护收成并减少经济损失。数据说明该数据集包括473张番石榴果实的注释图像,分为三类。图像经过预处理步骤,例如钝
- 四个机器学习模型对比道路裂缝检测识别分类模型
深度学习乐园
深度学习实战项目机器学习分类人工智能
完整源码项目包获取→点击文章末尾名片!一、课题综述1.1.课题简介在机器学习的研究领域中,传统分类算法模型数量众多,适合的应用场景也各不相同。1.2.课题目标(示例)本课题使用的数据集来自于数据分析与数据挖掘竞赛Kaggle,该竞赛为数据科学领域著名的国际性赛事之一。课题使用的数据集为带标签的图像数据集,包含带有裂痕和不带有裂痕的桥梁、墙和人行道图片。课题的目标为对于目标数据集,搭建相应的传统机器
- Densenet模型花卉图像分类
深度学习乐园
分类数据挖掘人工智能
项目源码获取方式见文章末尾!600多个深度学习项目资料,快来加入社群一起学习吧。《------往期经典推荐------》项目名称1.【基于CNN-RNN的影像报告生成】2.【卫星图像道路检测DeepLabV3Plus模型】3.【GAN模型实现二次元头像生成】4.【CNN模型实现mnist手写数字识别】5.【fasterRCNN模型实现飞机类目标检测】6.【CNN-LSTM住宅用电量预测】7.【VG
- 一站式AI创作引擎:LiblibAI如何重塑中国图像生成生态
Liudef06小白
人工智能AI作画
一站式AI创作引擎:LiblibAI如何重塑中国图像生成生态无需显卡,每日免费200张图——这个本土AI平台正在让专业级图像生成变得像发微信一样简单。在StableDiffusion掀起全球AI艺术浪潮的2023年,中国设计师们面临着一个尴尬的困境:动辄数万元的高性能显卡将大多数人挡在了创作门槛之外。正是这一年5月,北京奇点星宇科技推出LiblibAI(哩布哩布AI),以**“云端StableDi
- 医学图像增强的层级化模糊与虚拟仪器无参考质量评价研究【附代码】
拉勾科研工作室
计算机视觉图像处理人工智能
算法与建模领域的探索者|专注数据分析与智能模型设计✨擅长算法、建模、数据分析matlab、python、仿真✅具体问题可以私信或查看文章底部二维码✅感恩科研路上每一位志同道合的伙伴!(1)层级模糊隶属度的X光医学图像增强算法针对X光医学图像普遍存在的对比度差、细节模糊等问题,本算法提出了一种基于层级模糊隶属度的增强方法。该方法的核心思想在于利用拉普拉斯金字塔分解图像,并在多尺度下分层计算模糊隶属度
- 车牌号识别Delphi演示程序:轻松实现车牌识别技术
瞿巧群Justin
车牌号识别Delphi演示程序:轻松实现车牌识别技术去发现同类优质开源项目:https://gitcode.com/项目介绍在智能交通系统领域,车牌号识别是一项至关重要的技术。今天,我们要介绍的是一个基于Delphi语言开发的车牌号识别演示程序。该程序能够高效识别并处理车牌号码,为交通监控、停车场管理等领域提供了极大的便利。项目技术分析本项目基于Delphi环境开发,利用先进的图像处理技术,实现了
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f