HDU 4288 Coder 离散化+线段树

HDU 4288 Coder 离散化+线段树_第1张图片


 题意:对一个集合进行插入与删除操作。要求询问某个时刻,集合中的元素从小到大排序之后,序号%5 ==3 的元素值之和。

首先元素的值可以达到10^9 所以,首先离散化,将所有可能的元素值映射到正整数。

然后线段树的话,用index  存当前节点 所含的元素数量。

用 D [R] 存 所含的元素中,序号%5 ==R  的元素值之和。

则可以用左右子树的这些信息来求出本节点的这些信息,具体见代码。

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <map>
#define maxn 100010
using namespace std;
//记录操作 
int n;
int op[maxn];
//离散化
int cnt;
struct A{
	int index;
	int value;
	void Set(int I,int V){index=I;value=V;}
	bool operator<(const A&B)const{return value<B.value;}
}h[maxn];
map<int,int>MP;
//线段树 
struct Node{
	int index;
	long long D[5];
	void clear(){index=0;memset(D,0,sizeof(D));}
	void show(){
		printf("index:%d \n%d %d %d %d %d \n",index,D[0],D[1],D[2],D[3],D[4]);
	}
}H[maxn<<2];
void PushUp(int rt){
	H[rt].index=H[rt<<1].index+H[rt<<1|1].index;
	for(int r=0;r<5;++r){
		H[rt].D[r]=H[rt<<1].D[r]+H[rt<<1|1].D[(r+5-(H[rt<<1].index%5))%5];
	}
}
void build(int l,int r,int rt){
	if(l==r){
		H[rt].clear();
		return;
	}
	int m=(l+r)>>1;
	build(l,m,rt<<1);
	build(m+1,r,rt<<1|1);
	PushUp(rt);
}

void Add(int X,int C,int l,int r,int rt){
	if(l==r){
		H[rt].clear();
		H[rt].index=1;
		H[rt].D[1]=C;
		return;
	}
	int m=(l+r)>>1;
	if(X <= m) Add(X,C,l,m,rt<<1);
	if(X >  m) Add(X,C,m+1,r,rt<<1|1);
	PushUp(rt);
}
void Del(int X,int l,int r,int rt){
	if(l==r){
		H[rt].clear();
		return;
	}
	int m=(l+r)>>1;
	if(X <= m) Del(X,l,m,rt<<1);
	if(X >  m) Del(X,m+1,r,rt<<1|1);
	PushUp(rt);
}
int main(void)
{ 
	while(~scanf("%d",&n)){
		cnt=0;MP.clear();
		//记录操作 
		for(int i=0;i<n;++i){
			char Op[5];
			scanf("%s",Op);
			switch(Op[0]){
				case 'a':
					scanf("%d",&op[i]);
					if(!MP.count(op[i])){
						++cnt;
						h[cnt].Set(cnt,op[i]);
						MP[op[i]]=1;
					}
					break;
				case 'd':scanf("%d",&op[i]);op[i]=-op[i];break;
				case 's':op[i]=0;break;
				default:break;
			}
		}
		//离散化 
		sort(h+1,h+cnt+1);
		for(int i=1;i<=cnt;++i){
			MP[h[i].value]=i;
		}
		build(1,cnt,1);
		//线段树
		for(int i=0;i<n;++i){
			if(op[i]){
				if(op[i]>0){
					Add(MP[op[i]],op[i],1,cnt,1);
				}
				else{
					Del(MP[-op[i]],1,cnt,1);
				}
			}
			else{
				cout<<H[1].D[3]<<endl;
			}
		}
	}
return 0;
}








你可能感兴趣的:(HDU 4288 Coder 离散化+线段树)