利用已经封装好的AES加密算法,实现CBC模式加密和CTR模式加密。
(1)CBC解密
如图,CBC模式的解密,步骤主要有三个,首先是拿密文段逐一放到AES解密盒子里面得到一个结果temp(事先要把密文先裁剪成若干段);然后拿IV或者上一段密文段与temp进行异或,得到明文段;最后将明文段串合起来得到明文。注意事先所给的密文最后面有可能有若干位补码(因为非16倍数没法平均切分自然也没法放到AES解密块中解密),为了补满16的倍数补了一些奇怪的字符,这个不用管它。
(2)CTR解密
CTR的解密步骤和CBC的类似,主要的不同在于它用的是AES的加密模块来解密,而CBC用的是AES解密模块,同时CTR它是对初始向量IV每次加一之后放进AES模块里面,而不像CBC解密放进去的是密文段。最后得到的temp结果拿它和密文段进行异或即可得到明文段。所以代码跟CBC的自然也差不多,只需要进行小部分的改动即可。
先上运行结果(eclipse)再上代码:
代码(AES.h和AES.cpp版权归小杰大神,其余归笔者):
(1)main.cpp
/* * main.cpp * * Created on: 2016年3月24日 * Author: Lv_Lang */ #include <stdio.h> //#include "AES.h" #include "CBC.h" #include "CTR.h" void test_CBC() { Byte key[16] = { 0x14, 0x0b, 0x41, 0xb2, 0x2a, 0x29, 0xbe, 0xb4, 0x06, 0x1b, 0xda, 0x66, 0xb6, 0x74, 0x7e, 0x14 }; Byte IV[16] = { 0x4c, 0xa0, 0x0f, 0xf4, 0xc8, 0x98, 0xd6, 0x1e, 0x1e, 0xdb, 0xf1, 0x80, 0x06, 0x18, 0xfb, 0x28 }; Byte stream[100] = { //0x4c, 0xa0, 0x0f, 0xf4, 0xc8, 0x98, 0xd6, 0x1e, 0x1e, 0xdb, 0xf1, 0x80, 0x06, 0x18, 0xfb, 0x28, 0x1e, 0x98, 0xca, 0xf6, 0xd3, 0xcb, 0x1b, 0xee, 0xb3, 0xbe, 0xd0, 0x5a, 0x78, 0x52, 0xf2, 0xb6, 0x78, 0x5e, 0xdd, 0x55, 0x71, 0xb8, 0x97, 0x47, 0x07, 0x20, 0xf2, 0xd4, 0x27, 0x71, 0x83, 0xab /*0x63, 0xcb, 0x8d, 0x05, 0x3b, 0xe7, 0xfc, 0xf1, 0x11, 0xcf, 0x4a, 0x6e, 0x04, 0x43, 0x01, 0x07, 0x2a, 0x86, 0x36, 0xca, 0x9b, 0xea, 0x59, 0xa7, 0xb6, 0x50, 0x58, 0xe6, 0x52, 0xe4, 0x8a, 0xbd, 0xcd, 0x46, 0x1b, 0x97, 0x1b, 0xec, 0xdf, 0xdc, 0xb1, 0xf4, 0x4b, 0x36, 0x02, 0x25, 0x5e, 0x2d, 0x61, 0x6b, 0xdd, 0x10, 0x71, 0xa5, 0x47, 0x55, 0xc3, 0x06, 0x88, 0x79, 0x3d, 0xbf, 0x1a, 0x4a*/ }; int n = 4;//stream长度除以16 Byte *fullKey = keyExpansion(key); cipherBlockChainingDecryption(stream, IV, fullKey, n); for(int i = 0; i < 16 * n; i++) printf("%c", stream[i]); printf("\n"); } void test_CTR() { Byte key[16] = { 0x36, 0xf1, 0x83, 0x57, 0xbe, 0x4d, 0xbd, 0x77, 0xf0, 0x50, 0x51, 0x5c, 0x73, 0xfc, 0xf9, 0xf2 }; Byte IV[16] = { 0x69, 0xdd, 0xa8, 0x45, 0x5c, 0x7d, 0xd4, 0x25, 0x4b, 0xf3, 0x53, 0xb7, 0x73, 0x30, 0x4e, 0xec }; Byte stream[100] = { 0x0c, 0xf0, 0x56, 0x6a, 0x32, 0x08, 0xc8, 0xf1, 0xa7, 0x5b, 0x09, 0x03, 0xbb, 0xb2, 0x1a, 0xc3, 0x88, 0x95, 0xb7, 0xaa, 0xfc, 0x1d, 0x41, 0xfc, 0x7c, 0x70, 0x80, 0x86, 0xbf, 0x0a, 0x9a, 0x90 /*0x0e, 0xc7, 0x70, 0x23, 0x30, 0x09, 0x8c, 0xe7, 0xf7, 0x52, 0x0d, 0x1c, 0xbb, 0xb2, 0x0f, 0xc3, 0x88, 0xd1, 0xb0, 0xad, 0xb5, 0x05, 0x4d, 0xbd, 0x73, 0x70, 0x84, 0x9d, 0xbf, 0x0b, 0x88, 0xd3, 0x93, 0xf2, 0x52, 0xe7, 0x64, 0xf1, 0xf5, 0xf7, 0xad, 0x97, 0xef, 0x79, 0xd5, 0x9c, 0xe2, 0x9f, 0x5f, 0x51, 0xee, 0xca, 0x32, 0xea, 0xbe, 0xdd, 0x9a, 0xfa, 0x93, 0x29, 0x04, 0x04, 0x04, 0x04*/ }; int n = 2; Byte *fullKey = keyExpansion(key); counterModeDecryption(stream, IV, fullKey, n); for(int i = 0; i < 16 * n; i++) printf("%c", stream[i]); printf("\n"); //counterModeEncryption(stream, IV, fullKey, 16 * 4); /*for(int i = 0; i < 16 * 4; i++) printf("%02X ", stream[i]); printf("\n");*/ } int main() { /* Byte plainText[4][4] = { {0x00, 0x12, 0x0C, 0x08}, {0x04, 0x04, 0x00, 0x23}, {0x12, 0x12, 0x13, 0x19}, {0x14, 0x00, 0x11, 0x19} }; Byte key[16] = { 0x24, 0x34, 0x31, 0x13, 0x75, 0x75, 0xE2, 0xAA, 0xA2, 0x56, 0x12, 0x54, 0xB3, 0x88, 0x00, 0x87 }; Byte *fullKey = keyExpansion(key); AES_Encryption(plainText, fullKey); AES_Decryption(plainText, fullKey);*/ printf("lab2实验结果。版权归吕浪:\n"); printf("CBC模式解密的结果:\n"); test_CBC(); printf("CTR模式解密的结果:\n"); test_CTR(); return 0; }
// // AES.h // SymmetricKeyCipher // // Created by szxjzhou on 3/24/15. // Copyright (c) 2015 szxjzhou. All rights reserved. // #ifndef __SymmetricKeyCipher__AES__ #define __SymmetricKeyCipher__AES__ #include <stdio.h> typedef unsigned char Byte; // Each word is 4 Bytes #define BYTES_IN_WORD (4) // Each round of key is 4 words #define WORD_IN_ROUND (4) // Each byte has 8 bits #define BIT_IN_BYTE (8) // Each round of key is 4 words, say 4 * 4 = 16 Bytes #define BYTES_IN_ROUND (16) // Expended key length is 11 words, say 11 * 16 = 176 Bytes #define BYTES_IN_EXPANDED_KEY (176) // In AES128 has 10 rounds except the initialization round #define NUM_OF_ROUNDS (10) static Byte sBox[16][16] = { {0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76}, {0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0}, {0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15}, {0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75}, {0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84}, {0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF}, {0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8}, {0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2}, {0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73}, {0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB}, {0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79}, {0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08}, {0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A}, {0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E}, {0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF}, {0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16} }; static Byte sBoxInv[16][16] = { {0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB}, {0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB}, {0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E}, {0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25}, {0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92}, {0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84}, {0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06}, {0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B}, {0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73}, {0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E}, {0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B}, {0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4}, {0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F}, {0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF}, {0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61}, {0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D} }; static Byte constantMatrix[4][4] = { {0x02, 0x03, 0x01, 0x01}, {0x01, 0x02, 0x03, 0x01}, {0x01, 0x01, 0x02, 0x03}, {0x03, 0x01, 0x01, 0x02} }; static Byte constantMatrixInv[4][4] = { {0x0E, 0x0B, 0x0D, 0x09}, {0x09, 0x0E, 0x0B, 0x0D}, {0x0D, 0x09, 0x0E, 0x0B}, {0x0B, 0x0D, 0x09, 0x0E} }; static Byte GF_constant[8] = {0x1B, 0x36, 0x6C, 0xD8, 0xAB, 0x4D, 0x9A, 0x2F}; static Byte roundConstant[10] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36}; Byte *keyExpansion(Byte *cipherKey); void AES_Encryption(Byte state[][BYTES_IN_WORD], Byte* key); void AES_Decryption(Byte state[][BYTES_IN_WORD], Byte* key); void rotateWord(Byte *word, int offset); void substitutionWord(Byte *word); void substitutionWord(Byte state[][BYTES_IN_WORD]); void substitutionWordInv(Byte state[][BYTES_IN_WORD]); void shiftRow(Byte state[][BYTES_IN_WORD]); void shiftRowInv(Byte state[][BYTES_IN_WORD]); void mixColumn(Byte state[][BYTES_IN_WORD]); void mixColumnInv(Byte state[][BYTES_IN_WORD]); Byte GF_Multiplication(Byte a, Byte b); void addRoundKey(Byte state[][BYTES_IN_WORD], Byte* key, int round); void printState(Byte state[][BYTES_IN_WORD]); #endif /* defined(__SymmetricKeyCipher__AES__) */
// // AES.cpp // SymmetricKeyCipher // // Created by szxjzhou on 3/24/15. // Copyright (c) 2015 szxjzhou. All rights reserved. // #include <stdio.h> #include <stdlib.h> #include "AES.h" Byte *keyExpansion(Byte *cipherKey) { Byte *expandedKey = (Byte *)malloc(sizeof(Byte) * BYTES_IN_EXPANDED_KEY); // get the key of the first round for(int i = 0; i < BYTES_IN_ROUND; i++) expandedKey[i] = cipherKey[i]; // get the key of other rounds Byte *temporary_word = (Byte *)malloc(sizeof(Byte) * BYTES_IN_WORD); for(int i = 1; i <= NUM_OF_ROUNDS; i++) { // calculate the temporary word for(int j = 0; j < BYTES_IN_WORD; j++) temporary_word[j] = expandedKey[i * BYTES_IN_ROUND - BYTES_IN_WORD + j]; rotateWord(temporary_word, 1); substitutionWord(temporary_word); temporary_word[0] = (temporary_word[0] ^ roundConstant[i - 1]); // get the key of this round for(int j = 0; j < BYTES_IN_WORD; j++) expandedKey[i * BYTES_IN_ROUND + j] = temporary_word[j] ^ expandedKey[(i - 1) * BYTES_IN_ROUND + j]; for(int j = 1; j < WORD_IN_ROUND; j++) { for(int k = 0; k < BYTES_IN_WORD; k++) { expandedKey[i * BYTES_IN_ROUND + j * BYTES_IN_WORD + k] = expandedKey[i * BYTES_IN_ROUND + (j - 1) * BYTES_IN_WORD + k] ^ expandedKey[(i - 1) * BYTES_IN_ROUND + j * BYTES_IN_WORD + k]; } } } free(temporary_word); return expandedKey; } void AES_Encryption(Byte state[][BYTES_IN_WORD], Byte* key) { // Round 0: addRoundKey addRoundKey(state, key, 0); // Round 1~9: substitutionWord + shiftRow + mixColumn + addRoundKey for(int i = 1; i < 10; i++) { substitutionWord(state); shiftRow(state); mixColumn(state); addRoundKey(state, key, i); } // Round 10: substitutionWord + shiftRow + addRoundKey substitutionWord(state); shiftRow(state); addRoundKey(state, key, 10); } void AES_Decryption(Byte state[][BYTES_IN_WORD], Byte* key) { // Inv round 10: addRoundKey + shiftRowInv + substitutionWordInv addRoundKey(state, key, 10); shiftRowInv(state); substitutionWordInv(state); // Inv round 9~1: addRoundKey + mixColumnInv + shiftRowInv + substitutionWordInv for(int i = 9; i > 0; i--) { addRoundKey(state, key, i); mixColumnInv(state); shiftRowInv(state); substitutionWordInv(state); } // Inv round 0: addRoundKey addRoundKey(state, key, 0); } void rotateWord(Byte *word, int offset) { Byte *temp = (Byte *)malloc(sizeof(Byte) * BYTES_IN_WORD); for(int i = 0; i < BYTES_IN_WORD; i++) temp[(i + BYTES_IN_WORD - offset) % 4] = word[i]; for(int i = 0; i < BYTES_IN_WORD; i++) word[i] = temp[i]; free(temp); } void substitutionWord(Byte *word) { for(int i = 0; i < BYTES_IN_WORD; i++) word[i] = sBox[word[i] / 16][word[i] % 16]; } void substitutionWord(Byte state[][BYTES_IN_WORD]) { for(int i = 0; i < BYTES_IN_WORD; i++) for(int j = 0; j < BYTES_IN_WORD; j++) state[i][j] = sBox[state[i][j] / 16][state[i][j] % 16]; } void substitutionWordInv(Byte state[][BYTES_IN_WORD]) { for(int i = 0; i < BYTES_IN_WORD; i++) for(int j = 0; j < BYTES_IN_WORD; j++) state[i][j] = sBoxInv[state[i][j] / 16][state[i][j] % 16]; } void shiftRow(Byte state[][BYTES_IN_WORD]) { for(int i = 0; i < BYTES_IN_WORD; i++) rotateWord(state[i], i); } void shiftRowInv(Byte state[][BYTES_IN_WORD]) { for(int i = 1; i < BYTES_IN_WORD; i++) rotateWord(state[i], 4 - i); } void mixColumn(Byte state[][BYTES_IN_WORD]) { Byte *temp = (Byte *)malloc(sizeof(Byte) * BYTES_IN_WORD); for(int i = 0; i < BYTES_IN_WORD; i++) { for(int j = 0; j < BYTES_IN_WORD; j++) temp[j] = state[j][i]; for(int j = 0; j < BYTES_IN_WORD; j++) { state[j][i] = 0; for(int k = 0; k < BYTES_IN_WORD; k++) state[j][i] = (state[j][i] ^ GF_Multiplication(constantMatrix[j][k], temp[k])); } } free(temp); } void mixColumnInv(Byte state[][BYTES_IN_WORD]) { Byte *temp = (Byte *)malloc(sizeof(Byte) * BYTES_IN_WORD); for(int i = 0; i < BYTES_IN_WORD; i++) { for(int j = 0; j < BYTES_IN_WORD; j++) temp[j] = state[j][i]; for(int j = 0; j < BYTES_IN_WORD; j++) { state[j][i] = 0; for(int k = 0; k < BYTES_IN_WORD; k++) state[j][i] = (state[j][i] ^ GF_Multiplication(constantMatrixInv[j][k], temp[k])); } } free(temp); } Byte GF_Multiplication(Byte a, Byte b) { bool *temp = (bool *)malloc(sizeof(bool) * BIT_IN_BYTE * 2); for(int i = 0; i < BIT_IN_BYTE; i++) { temp[i] = b % 2; b /= 2; } short result = 0; for(int i = 0; i < BIT_IN_BYTE; i++) { result = result ^ ((temp[i] * a) << i); } int count = 0; int temp_result = result; for(int i = 0; i < BIT_IN_BYTE * 2; i++) { temp[count++] = temp_result % 2; temp_result /= 2; } for(int i = BIT_IN_BYTE; i < BIT_IN_BYTE * 2; i++) if(temp[i] == 1) result = result ^ GF_constant[i - BIT_IN_BYTE]; free(temp); return (Byte)result; } void addRoundKey(Byte state[][BYTES_IN_WORD], Byte* key, int round) { for(int i = 0; i < BYTES_IN_WORD; i++) for(int j = 0; j < BYTES_IN_WORD; j++) state[j][i] = (state[j][i] ^ key[round * BYTES_IN_ROUND + i * 4 + j]); } void printState(Byte state[][BYTES_IN_WORD]) { for(int i = 0; i < BYTES_IN_WORD; i++) { for(int j = 0; j < BYTES_IN_WORD; j++) printf("%02X ", state[i][j]); printf("\n"); } printf("\n"); }
/* * CBC.h * * Created on: 2016年3月24日 * Author: Lv_Lang */ #ifndef CBC_H_ #define CBC_H_ #include <stdio.h> #include "AES.h" void cipherBlockChainingDecryption(Byte *stream,Byte *IV,Byte *fullKey,int len); void B(Byte temp[][16],Byte state[4][4],int i); void S(Byte temp[][16],Byte state[4][4],int i); void X(Byte p[4][16],Byte c[4][16],Byte *IV,int len); void combine(Byte p[4][16],Byte *stream,int len); #endif /* CBC_H_ */
/* * CBC.cpp * * Created on: 2016年3月24日 * Author: Lv_Lang */ #include "CBC.h" //16=4x4拆开 void S(Byte temp[][16],Byte state[4][4],int i)//i表示对第几块进行操作 { int k = 0; for(int col = 0;col < 4;col++) { for(int row = 0;row < 4;row++) { state[row][col] = temp[i][k++]; } } } //4x4=16连合 void B(Byte temp[][16],Byte state[4][4],int i) { int k = 0; for(int col = 0;col < 4;col++) { for(int row = 0;row < 4;row++) { temp[i][k++] = state[row][col]; } } } //异或 void X(Byte p[4][16],Byte c[4][16],Byte *IV,int len) { for(int i=0;i<len;i++) { if(i == 0) { for(int j=0;j<16;j++) p[0][j] ^= IV[j]; } else { for(int j=0;j<16;j++) p[i][j] ^= c[i-1][j]; } } } //合并 void combine(Byte p[4][16],Byte *stream,int len) { int k=0; for(int row=0;row < 4;row++) { for(int col=0;col < 16;col++) { stream[k++] = p[row][col]; } } } void cipherBlockChainingDecryption(Byte *stream,Byte *IV,Byte *fullKey,int len) { //密文切分成四块 Byte c[4][16]; //明文也是四块 Byte p[4][16]; int t = 0; for(int i=0;i<len;i++) { for(int j=0;j < 16;j++) { c[i][j] = stream[t++]; } } //每块都进行AES解密,得到解密后的明文块 for(int i=0;i<len;i++) { Byte state[4][4]; S(c,state,i);//16=4x4拆开 AES_Decryption(state,fullKey); B(p,state,i);//4x4=16连合 } //异或 X(p,c,IV,len); //合并明文块 combine(p,stream,len); /*for(int i = 0;i<16;i++) { printf("%c",p[1][i]); } printf("\n");*/ }
/* * CTR.h * * Created on: 2016年3月24日 * Author: Lv_Lang */ #ifndef CTR_H_ #define CTR_H_ #include <stdio.h> #include "AES.h" void _B(Byte temp[][16],Byte state[4][4],int i); void _S(Byte *IV,Byte state[4][4]); void _X(Byte p[4][16],Byte c[4][16],int len); void _combine(Byte p[4][16],Byte *stream,int len); void counterModeDecryption(Byte *stream,Byte *IV,Byte *fullKey,int len); #endif /* CTR_H_ */
/* * CTR.cpp * * Created on: 2016年3月24日 * Author: Lv_Lang */ #include "CTR.h" //16=4x4拆开 void _S(Byte *IV,Byte state[4][4])//i表示对第几块进行操作 { int k = 0; for(int col = 0;col < 4;col++) { for(int row = 0;row < 4;row++) { state[row][col] = IV[k++]; } } } //4x4=16连合 void _B(Byte temp[][16],Byte state[4][4],int i) { int k = 0; for(int col = 0;col < 4;col++) { for(int row = 0;row < 4;row++) { temp[i][k++] = state[row][col]; } } } //异或 void _X(Byte p[4][16],Byte c[4][16],int len) { for(int i=0;i<len;i++) { for(int j=0;j<16;j++) p[i][j] ^= c[i][j]; } } //合并 void _combine(Byte p[4][16],Byte *stream,int len) { int k=0; for(int row=0;row < 4;row++) { for(int col=0;col < 16;col++) { stream[k++] = p[row][col]; } } } void counterModeDecryption(Byte *stream,Byte *IV,Byte *fullKey,int len) { //密文切分成四块 Byte c[4][16]; //明文也是四块 Byte p[4][16]; int t = 0; for(int i=0;i<len;i++) { for(int j=0;j < 16;j++) { c[i][j] = stream[t++]; } } //每块都进行AES解密,得到解密后的明文块 for(int i=0;i<len;i++) { //首先要给IV加i IV[15] += i; Byte state[4][4]; _S(IV,state);//16=4x4拆开 AES_Encryption(state,fullKey); _B(p,state,i);//4x4=16连合 } //异或 _X(p,c,len); //合并明文块 _combine(p,stream,len); /*for(int i = 0;i<16;i++) { printf("%c",p[0][i]); } printf("\n");*/ }
其实笔者只是实现了这两种解密模式的外框架,真正核心和更有难度的在于AES加解密的实现。这里有几个讲AES和几种加解密模型的链接:
点击打开链接
点击打开链接
点击打开链接
点击打开链接