Linux内存管理(2)

进程内存的分配与回收

创建进程fork()、程序载入execve()、映射文件mmap()、动态内存分配malloc()/brk()等进程相关操作都需要分配内存给进程。不过这时进程申请和获得的还不是实际内存,而是虚拟内存,准确的说是“内存区域”。进程对内存区域的分配最终多会归结到do_mmap()函数上来(brk调用被单独以系统调用实现,不用do_mmap()),

内核使用do_mmap()函数创建一个新的线性地址区间。但是说该函数创建了一个新VMA并不非常准确,因为如果创建的地址区间和一个已经存在的地址区间相邻,并且它们具有相同的访问权限的话,那么两个区间将合并为一个。如果不能合并,那么就确实需要创建一个新的VMA了。但无论哪种情况, do_mmap()函数都会将一个地址区间加入到进程的地址空间中--无论是扩展已存在的内存区域还是创建一个新的区域。

同样释放一个内存区域使用函数do_ummap(),它会销毁对应的内存区域。

如何由虚变实!

    从上面已经看到进程所能直接操作的地址都为虚拟地址。当进程需要内存时,从内核获得的仅仅时虚拟的内存区域,而不是实际的物理地址,进程并没有获得物理内存(物理页框——页的概念请大家参与硬件基础一章),获得的仅仅是对一个新的线性地址区间的使用权。实际的物理内存只有当进程真的去访问新获取的虚拟地址时,才会由“请页机制”产生“缺页”异常,从而进入分配实际页框的例程。

该异常是虚拟内存机制赖以存在的基本保证——它会告诉内核去真正为进程分配物理页,并建立对应的页表,这之后虚拟地址才实实在在映射到了系统物理内存上。(当然如果页被换出到磁盘,也会产生缺页异常,不过这时不用再建立页表了)

这种请页机制把页框的分配推迟到不能再推迟为止,并不急于把所有的事情都一次做完(这中思想由点想涉及模式中的代理模式(proxy))。之所以能这么做是利用了内存访问的“局部性原理”,请页带来的好处是节约了空闲内存,提高了系统吞吐。要想更清楚的了解请页,可以看看《深入理解linux内核》一书。

这里我们需要说明在内存区域结构上的nopage操作,该操作是当发生访问的进程虚拟内存而发现并未真正分配页框时,该方法变被调用来分配实际的物理页,并为该页建立页表项。在最后的例子中我们会演示如何使用该方法。

系统物理内存管理

虽然应用程序操作的对象是映射到物理内存之上的虚拟内存,但是处理器直接操作的却是物理内存。所以当用程序访问一个虚拟地址时,首先必须将虚拟地址转化成物理地址,然后处理器才能解析地址访问请求。地址的转换工作需要通过查询页表才能完成,概括的讲,地址转换需要将虚拟地址分段,使每段虚地址都作为一个索引指向页表,而页表项则指向下一级别的页表或者指向最终的物理页面。

每个进程都有自己的页表。进程描述符号的pgd域指向的就是进程的页全局目录。席面我们借用《linux设备驱动程序》中的一幅图大致看看进程地址空间到物理页之间的转换关系。

     上面的过程说起简单,做起难呀。因为在虚拟地址映射到页之前必须先分配物理页——也就是说必须先从内核获取空闲页,并建立页表。下面我们介绍一下内核管理物理内存的机制。

物理内存管理(页管理)

Linux内核管理物理内存是通过分页机制实现的,它将整个内存划分成无数4k(i386体系结构中)大小页,从而分配和回收内存的基本单位便是内存页了。利用分页管理有助于灵活分配内存地址,因为分配时不必要求必须有大块的连续内存[1],系统可以东一页、西一页的凑出所需要的内存供进程使用。虽然如此,但是实际上系统使用内存还是倾向于分配连续的内存块,因为分配连续内存时,页表不需要更改,因此能降低TLB的刷新率(频繁刷新会很大增加访问速度)。

鉴于上述需求,内核分配物理页为了尽量减少不连续情况,采用了“伙伴”关系来管理空闲页框。伙伴关系分配算法大家不应陌生——几乎所有操作系统书都会提到,我们不去详细说它了,如果不明白可以参看有关资料。这里只需要大家明白Linux中空闲页面的组织和管理利用了伙伴关系,因此空闲页面分配时也需要遵循伙伴关系,最小单位只能是2的幂倍页面大小。内核中分配空闲页框的基本函数是get_free_page/get_free_pages,它们或是分配单页或是分配指定的页框(248…512页)。

注意:get_free_page是在内核中分配内存,不同于malloc在用户空间中分配,malloc利用堆动态分配,实际上是调用brk()系统调用,该调用的作用是扩大或缩小进程堆空间(它会修改进程的brk域)。如果现有的内存区域不够容纳堆空间,则会以页面大小的倍数位单位,扩张或收缩对应的内存区域,但brk值并非以页面大小为倍数修改,而是按实际请求修改。因此Malloc在用户空间分配内存可以以字节为单位分配,但内核在内部仍然会是以页为单位分配的。

   另外需要提及的是,物理页在系统中由页框结构struct paga描述,系统中所有的页框存储在数组mem_map[]中,可以通过该数组找到系统中的每一页(空闲或非空闲)。而其中的空闲页框则可由上述提到的以伙伴关系组织的空闲页链表(free_area[MAX_ORDER]索引。

内核内存使用

Slab

    所谓尺有所长,寸有所短。以页为最小单位分配内存对于内核管理系统物理内存来说的确比较方便,但内核自身最常使用的内存却往往是很小(远远小于一页)的内存块——比如存放文件描述符、进程描述符、虚拟内存区域描述符等行为所需的内存都不足一页。这些用来存放描述符的内存相比页面而言,就好比是面包屑与面包。一个整页中可以聚集多个这种这些小块内存;而且这些小块内存块也和面包屑一样频繁地生成/销毁。

为了满足内核对这种小内存块的需要,Linux系统采用了一种被称为slab分配器的技术。Slab分配器的实现相当复杂,但原理不难,其核心思想就是“存储池[2]的运用。内存片段(小块内存)被看作对象,当被使用完后,并不直接释放而是被缓存到“存储池”里,留做下次使用,这无疑避免了频繁创建与销毁对象所带来的额外负载。

Slab技术不但避免了内存内部分片(下文将解释)带来的不便(引入Slab分配器的主要目的是为了减少对伙伴系统分配算法的调用次数——频繁分配和回收必然会导致内存碎片——难以找到大块连续的可用内存,而且可以很好利用硬件缓存提高访问速度。

   Slab并非是脱离伙伴关系而独立存在的一种内存分配方式,slab仍然是建立在页面基础之上,换句话说,Slab将页面(来自于伙伴关系管理的空闲页框链)撕碎成众多小内存块以供分配,slab中的对象分配和销毁使用kmem_cache_allockmem_cache_free

Kmalloc

Slab分配器不仅仅只用来存放内核专用的结构体,它还被用来处理内核对小块内存的请求。当然鉴于Slab分配器的特点,一般来说内核程序中对小于一页的小块内存的求情才通过Slab分配器提供的接口Kmalloc来完成(虽然它可分配32 131072字节的内存)。从内核内存分配角度讲kmalloc可被看成是get_free_pages)的一个有效补充,内存分配粒度更灵活了。

有兴趣的话可以到/proc/slabinfo中找到内核执行现场使用的各种slab信息统计,其中你会看到系统中所有slab的使用信息。从信息中可以看到系统中除了专用结构体使用的slab外,还存在大量为Kmalloc而准备的Slab(其中有些为dma准备的)。

1] 还有些情况必须要求内存连续,比如DMA传输中使用的内存,由于不涉及页机制所以必须连续分配。

[2] 这种存储池的思想在计算机科学里广泛应用,比如数据库连接池、内存访问池等等

内核非连续内存分配(Vmalloc

伙伴关系也好、slab技术也好,从内存管理理论角度而言目的基本是一致的,它们都是为了防止“分片”,不过分片又分为外部分片和内部分片之说,所谓内部分片是说系统为了满足一小段内存区(连续)的需要,不得不分配了一大区域连续内存给它,从而造成了空间浪费;外部分片是指系统虽有足够的内存,但却是分散的碎片,无法满足对大块“连续内存”的需求。无论何种分片都是系统有效利用内存的障碍。slab分配器使得含与一个页面内众多小块内存可独立被分配使用,避免了内部分片,节约了空闲内存。伙伴关系把内存块按大小分组管理,一定程度上减轻了外部分片的危害,因为页框分配不在盲目,而是按照大小依次有序进行,不过伙伴关系只是减轻了外部分片,但并未彻底消除。你自己笔画一下多次分配页框后,空闲内存的剩余情况吧。

所以避免外部分片的最终思路还是落到了如何利用不连续的内存块组合成“看起来很大的内存块”——这里的情况很类似于用户空间分配虚拟内存,内存逻辑上连续,其实影射到并不一定连续的物理内存上。Linux内核借用了这个技术,允许内核程序在内核地址空间中分配虚拟地址,同样也利用页表(内核页表)将虚拟地址影射到分散的内存页上。以此完美地解决了内核内存使用中的外部分片问题。内核提供vmalloc函数分配内核虚拟内存,该函数不同于kmalloc,它可以分配较Kmalloc大得多的内存空间(可远大于128K,但必须是页大小的倍数),但相比Kmalloc来说Vmalloc需要对内核虚拟地址进行重影射,必须更新内核页表,因此分配效率上要低一些(用空间换时间)

与用户进程相似内核也有一个名为init_mmmm_strcut结构来描述内核地址空间,其中页表项pdg=swapper_pg_dir包含了系统内核空间( 3G -4G )的映射关系。因此vmalloc分配内核虚拟地址必须更新内核页表,而kmallocget_free_page由于分配的连续内存,所以不需要更新内核页表。

vmalloc 分配的内核虚拟内存与 kmalloc/get_free_page 分配的内核虚拟内存位于不同的区间,不会重叠。因为内核虚拟空间被分区管理,各司其职。 进程空间地址分布从0到 3 G (其实是到 PAGE_OFFSET, 0x86 中它等于 0xC0000000) ,从 3G vmalloc_start 这段地址是物理内存映射区域(该区域中包含了内核镜像、物理页框表 mem_map 等等)比如我使用的系统内存是 64M ( 可以用 free 看到 ) ,那么 ( 3G —— 3G + 64M ) 这片内存就应该映射物理内存,而 vmalloc_start 位置应在 3G + 64M 附近(说附近因为是在物理内存映射区与 vmalloc_start 期间还回存在一个 8M 大小的 gap 来防止跃界) ,vmalloc_end 的位置接近 4G ( 说接近是因为最后位置系统会保留一片 128k 大小的区域用于专用页面映射,还由可能会由高端内存映射区,这些都是细节,这里我们不做纠缠 )

Linux内存管理(2)_第1张图片

上图是内存分布的模糊轮廓

  get_free_pageKmalloc函数所分配的连续内存都陷于物理映射区域,所以它们返回的内核虚拟地址和实际物理地址仅仅是相差一个偏移量(PAGE_OFFSET),你可以很方便的将其转化为物理内存地址,同时内核也提供了virt_to_phys()函数将内核虚拟空间中的物理影射区地址转化为物理地址。要知道,物理内存映射区中的地址与内核页表是有序对应,系统中的每个物理页框都可以找到它对应的内核虚拟地址(在物理内存映射区中的)。

vmalloc分配的地址则限于vmalloc_startvmalloc_end之间。每一块vmalloc分配的内核虚拟内存都对应一个vm_struct结构体(可别和vm_area_struct搞混,那可是进程虚拟内存区域的结构),不同的内核虚拟地址被4k打大小空闲区的间隔,以防止越界——见下图)。与进程虚拟地址的特性一样,这些虚拟地址可与物理内存没有简单的位移关系,必须通过内核页表才可转换为物理地址或物理页。它们有可能尚未被映射,在发生缺页时才真正分配物理页框。

这里给出一个小程序帮助大家认请上面几种分配函数所对应的区域。

#include<linux/module.h>

#include<linux/slab.h>

#include<linux/vmalloc.h>

unsigned char *pagemem;

unsigned char *kmallocmem;

unsigned char *vmallocmem;

int init_module(void)

{

pagemem = get_free_page(0);

printk("<1>pagemem=%s",pagemem);

kmallocmem = kmalloc(100,0);

printk("<1>kmallocmem=%s",kmallocmem);

vmallocmem = vmalloc(1000000);

printk("<1>vmallocmem=%s",vmallocmem);

}

void cleanup_module(void)

{

free_page(pagemem);

kfree(kmallocmem);

vfree(vmallocmem);

}

你可能感兴趣的:(Linux内存管理(2))