POJ1192最优连通子集(树状dp)

最优连通子集
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 2140   Accepted: 1139

Description

众所周知,我们可以通过直角坐标系把平面上的任何一个点P用一个有序数对(x, y)来唯一表示,如果x, y都是整数,我们就把点P称为整点,否则点P称为非整点。我们把平面上所有整点构成的集合记为W。
定义1 两个整点P1(x1, y1), P2(x2, y2),若|x1-x2| + |y1-y2| = 1,则称P1, P2相邻,记作P1~P2,否则称P1, P2不相邻。
定义 2 设点集S是W的一个有限子集,即S = {P1, P2,..., Pn}(n >= 1),其中Pi(1 <= i <= n)属于W,我们把S称为整点集。
定义 3 设S是一个整点集,若点R, T属于S,且存在一个有限的点序列Q1, Q2, ?, Qk满足:
1. Qi属于S(1 <= i <= k);
2. Q1 = R, Qk = T;
3. Qi~Qi + 1(1 <= i <= k-1),即Qi与Qi + 1相邻;
4. 对于任何1 <= i < j <= k有Qi ≠ Qj;
我们则称点R与点T在整点集S上连通,把点序列Q1, Q2,..., Qk称为整点集S中连接点R与点T的一条道路。
定义4 若整点集V满足:对于V中的任何两个整点,V中有且仅有一条连接这两点的道路,则V称为单整点集。
定义5 对于平面上的每一个整点,我们可以赋予它一个整数,作为该点的权,于是我们把一个整点集中所有点的权的总和称为该整点集的权和。
我们希望对于给定的一个单整点集V,求出一个V的最优连通子集B,满足:
1. B是V的子集
2. 对于B中的任何两个整点,在B中连通;
3. B是满足条件(1)和(2)的所有整点集中权和最大的。

Input

第1行是一个整数N(2 <= N <= 1000),表示单整点集V中点的个数;
以下N行中,第i行(1 <= i <= N)有三个整数,Xi, Yi, Ci依次表示第i个点的横坐标,纵坐标和权。同一行相邻两数之间用一个空格分隔。-10^6 <= Xi, Yi <= 10^6;-100 <= Ci <= 100。

Output

仅一个整数,表示所求最优连通集的权和。

Sample Input

50 0 -20 1 11 0 10 -1 1-1 0 1

Sample Output

2

分析:

这题的意思是求一个连通图,并要求这个图的拥有最大权。

用的是树状DP,用DFS深搜,DP[u][0]表示以u为根且不含u的最大值,Dp[u][1]表示以u为根且含有u的最大值;

代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;

const int MAXN = 1010;

int ABS(int x)
{
    return x > 0 ? x : -x;
}

struct Node
{
  int to,next;
};

Node n[MAXN<<1];
int index = 0;
int head[MAXN];

void make_map(int from,int to)
{
    n[index].to = to;
    n[index].next = head[from];
    head[from] = index++;
}

void makemap(int from,int to)
{
    make_map(from,to);
    make_map(to,from);
}

int X[MAXN],Y[MAXN],C[MAXN];
int N;
int vis[MAXN],dp[MAXN][2];

void DFS(int u)
{
    vis[u] = 1;
    dp[u][0] = 0;dp[u][1] = C[u];
    for(int i = head[u];~i;i=n[i].next)
    {
       int v = n[i].to;
       if(!vis[v])
       {
           DFS(v);
           dp[u][0] = max(dp[u][0],max(dp[v][0],dp[v][1])); //将无根与其子孙比较。
           if(dp[v][1]>0) dp[u][1] += dp[v][1];
       }
    }
}

int main()
{
    while(scanf("%d",&N)!=EOF)
    {
        for(int i = 1;i <= N;i++)
        {
            scanf("%d%d%d",&X[i],&Y[i],&C[i]);
        }
        index=0;
        memset(head,-1,sizeof(head));
        memset(dp,0,sizeof(dp));
        memset(vis,0,sizeof(vis));
        for(int i = 1;i <= N;i++)
        {
            for(int j = i+1;j <= N;j++)
            {
                if(1 == ABS(X[i]-X[j]) + ABS(Y[i]-Y[j]))
                {
                    makemap(i,j);
                }
            }
        }
        DFS(1);
        printf("%d\n",max(dp[1][0],dp[1][1]));
    }
    return 0;
}


 

 

你可能感兴趣的:(POJ1192最优连通子集(树状dp))