![]() |
PDF (English) | Statistics | Forum |
Time Limit: 3 second(s) | Memory Limit: 64 MB |
Given an array of N integers indexed from 1 toN, and q queries, each in the form i j, you have to findthe number of distinct integers from index i to j (inclusive).
Input starts with an integer T (≤ 5),denoting the number of test cases.
The first line of a case is a blank line. The next linecontains two integers N (1 ≤ N ≤ 105), q (1≤ q ≤ 50000). The next line contains N space separatedintegers forming the array. There integers range in [0, 105].
Each of the next q lines will contain a query whichis in the form i j (1 ≤ i ≤ j ≤ N).
For each test case, print the case number in a single line.Then for each query you have to print a line containing number of distinctintegers from index i to j.
Sample Input |
Output for Sample Input |
1
8 5 1 1 1 2 3 5 1 2 1 8 2 3 3 6 4 5 4 8 |
Case 1: 4 1 4 2 4 |
Dataset is huge. Use faster I/O methods.
题解: 裸的莫队分块,时间复杂度近似为q*(n^1.5).
AC代码:
/* *********************************************** Author :xdlove Created Time :2015年11月22日 星期日 11时41分51秒 File Name :lightoj/1188/Fast_Queries.cpp ************************************************ */ #pragma comment(linker, "/STACK:1024000000,1024000000") #include <stdio.h> #include <string.h> #include <iostream> #include <algorithm> #include <memory.h> #include <vector> #include <queue> #include <set> #include <map> #include <string> #include <math.h> #include <stdlib.h> #include <time.h> using namespace std; #define REP_ab(i,a,b) for(int i = a; i <= b; i++) #define REP(i, n) for(int i = 0; i < n; i++) #define REP_1(i,n) for(int i = 1; i <= n; i++) #define DEP(i,n) for(int i = n - 1; i >= 0; i--) #define DEP_N(i,n) for(int i = n; i >= 1; i--) #define CPY(A,B) memcpy(A,B,sizeof(B)) #define MEM(A) memset(A,0,sizeof(A)) #define MEM_1(A) memset(A,-1,sizeof(A)) #define MEM_INF(A) memset(A,0x3f,sizeof(A)) #define MEM_INFLL(A) memset(A,0x3f3f,sizeof(A)) #define mid (((l + r) >> 1)) #define lson l, mid, u << 1 #define rson mid + 1, r, u << 1 | 1 #define ls (u << 1) #define rs (u << 1 | 1) typedef long long ll; typedef unsigned long long ull; const int INF = 0x3f3f3f3f; const ll INFLL = 0x3f3f3f3f3f3f3f3f; const int MAXN = 1e5 + 5; const int MAXM = MAXN; const int mod = 1e9 + 7; int a[MAXN],num[MAXN]; int n,q,unit,ans[MAXN]; struct Node{ int l,r,id; bool operator < (const Node &a) const{ if(l / unit != a.l / unit) return l / unit < a.l / unit; return r < a.r; } void read(int i){ scanf("%d %d",&l,&r); id = i; } }p[MAXN]; void work(){ int temp = 0; MEM(num); int L = 1,R = 0; for(int i = 0; i < q; i++){ while(R > p[i].r){ num[a[R]]--; if(num[a[R]] == 0) temp--; R--; } while(R < p[i].r){ R++; num[a[R]]++; if(num[a[R]] == 1) temp++; } while(L > p[i].l){ L--; num[a[L]]++; if(num[a[L]] == 1) temp++; } while(L < p[i].l){ num[a[L]]--; if(num[a[L]] == 0) temp--; L++; } ans[p[i].id] = temp; } } int main() { //freopen("in.txt","r",stdin); //freopen("out.txt","w",stdout); int T,cnt = 0; cin>>T; while(T--){ scanf("%d %d",&n,&q); REP_1(i,n) scanf("%d",&a[i]); REP(i,q) p[i].read(i); unit = (int)sqrt(n + 0.5); sort(p,p + q); work(); printf("Case %d:\n",++cnt); for(int i = 0; i < q; i++) printf("%d\n",ans[i]); } return 0; }