python开源爬虫框架scrapy源码解析(五)

    调用下载器downloader返回response后将使用_handle_downloader_output(self, response, request, spider)解析response

 def _handle_downloader_output(self, response, request, spider):
        assert isinstance(response, (Request, Response, Failure)), response
        # downloader middleware can return requests (for example, redirects)
        if isinstance(response, Request): #如果返回的request则跳转到crawl
            self.crawl(response, spider)
            return
        # response is a Response or Failure
        d = self.scraper.enqueue_scrape(response, request, spider)  # 解析response
        d.addErrback(lambda f: logger.error('Error while enqueuing downloader output',
                                            exc_info=failure_to_exc_info(f),
                                            extra={'spider': spider}))
        return d

看完上面代码后就应该了解实际的解析是有scraper.pyscraper.enqueue_scrape(response, request, spider)方法来完成的。     

def enqueue_scrape(self, response, request, spider):
        slot = self.slot
        dfd = slot.add_response_request(response, request)
        def finish_scraping(_):
            slot.finish_response(response, request)
            self._check_if_closing(spider, slot)
            self._scrape_next(spider, slot)
            return _
        dfd.addBoth(finish_scraping)
        dfd.addErrback(
            lambda f: logger.error('Scraper bug processing %(request)s',
                                   {'request': request},
                                   exc_info=failure_to_exc_info(f),
                                   extra={'spider': spider}))
        self._scrape_next(spider, slot)
        return dfd def _scrape_next(self, spider, slot):
        while slot.queue:
            response, request, deferred = slot.next_response_request_deferred()  #从dequez中取出response request
            self._scrape(response, request, spider).chainDeferred(deferred)

_scrape方法通过调用_scrape2返回ITEM,然后将ITEM传递到handle_spider_output方法.

  def _scrape(self, response, request, spider):
        """Handle the downloaded response or failure trough the spider
        callback/errback"""
        assert isinstance(response, (Response, Failure))
 
        dfd = self._scrape2(response, request, spider) # returns spiders processed output
        dfd.addErrback(self.handle_spider_error, request, response, spider)
        dfd.addCallback(self.handle_spider_output, request, response, spider)  #调用回掉方法handle_spider_output
        return dfd

_scrape2方法通过调用call_spider实现回掉requestcallbackspider默认的parse方法解析response返回ITEM.

def _scrape2(self, request_result, request, spider):
        """Handle the different cases of request's result been a Response or a
        Failure"""
        if not isinstance(request_result, Failure):
            return self.spidermw.scrape_response(
                self.call_spider, request_result, request, spider)  #调用call_spider方法返回ITEM
        else:
            # FIXME: don't ignore errors in spider middleware
            dfd = self.call_spider(request_result, request, spider)
            return dfd.addErrback(
                self._log_download_errors, request_result, request, spider)
 
    def call_spider(self, result, request, spider):
        result.request = request
        dfd = defer_result(result)
        dfd.addCallbacks(request.callback or spider.parse, request.errback) #调用request的callback方法或者spider默认parse
        return dfd.addCallback(iterate_spider_output) def handle_spider_output(self, result, request, response, spider):
        if not result:
            return defer_succeed(None)
        it = iter_errback(result, self.handle_spider_error, request, response, spider)
        dfd = parallel(it, self.concurrent_items,
            self._process_spidermw_output, request, response, spider) 
        return dfd

  handle_spider_output中通过parallerlITEM传参到_process_spidermw_output方法

  def handle_spider_output(self, result, request, response, spider):
        if not result:
            return defer_succeed(None)
        it = iter_errback(result, self.handle_spider_error, request, response, spider)
        dfd = parallel(it, self.concurrent_items,
            self._process_spidermw_output, request, response, spider) 
        return dfd

     _process_spidermw_output(self, output, request, response, spider)方法中通过调用itemproc.process_item将ITEM通过pipelines持久化的本地。

 
    def _process_spidermw_output(self, output, request, response, spider):
        """Process each Request/Item (given in the output parameter) returned
        from the given spider
        """
        if isinstance(output, Request):
            self.crawler.engine.crawl(request=output, spider=spider)
        elif isinstance(output, (BaseItem, dict)):   #通过pipeline输出item
            self.slot.itemproc_size += 1
            dfd = self.itemproc.process_item(output, spider)
            dfd.addBoth(self._itemproc_finished, output, response, spider)
            return dfd
        elif output is None:
            pass
        else:
            typename = type(output).__name__
            logger.error('Spider must return Request, BaseItem, dict or None, '
                         'got %(typename)r in %(request)s',
                         {'request': request, 'typename': typename},
                         extra={'spider': spider})

最后说下将数据持久化本地的实现。

def process_item(self, item, spider):
        return self._process_chain('process_item', item, spider)
def _add_middleware(self, pipe):   #添加itempipeline到middleware
        super(ItemPipelineManager, self)._add_middleware(pipe)
        if hasattr(pipe, 'process_item'):
            self.methods['process_item'].append(pipe.process_item)


你可能感兴趣的:(python,scrapy,爬虫)