题意:给出n个数排成一列,有q个操作,分为Q和C,Q操作[l,r]询问区间[l,r]的区间和,C操作[l,r]对[l,r]区间同时增加x,按题意输出就行了
题解:线段树,主要是好久没写又错了好长一段时间…万年LL我就不多说了,看错范围觉得sum[]不需要LL,另外重点是query和insert不可能越界访问,所以就算区间对于这组数据是无效区间,只要访问到对应区间也一定要pushdown…忘了结果纠结了好久,小数据还找不出问题
#include<iostream>
#include<cstdio>
#define LL long long
#define lson (o<<1)
#define rson ((o<<1)|1)
using namespace std;
const int maxn = 100005;
int n,q,l,r,c,a[maxn],lazy[4*maxn];
LL sum[4*maxn];
char s[5];
void build(int o,int l,int r)
{
if(l==r)
{
sum[o]=(LL)a[l];
return;
}
int mid = (l+r)/2;
build(lson,l,mid);
build(rson,mid+1,r);
sum[o]=sum[lson]+sum[rson];
}
void pushdown(int o,int l,int r)
{
if(lazy[o] && l!=r)
{
int mid = (l+r)/2;
lazy[lson]+=lazy[o];
lazy[rson]+=lazy[o];
sum[lson]+=(LL)lazy[o]*(LL)(mid-l+1);
sum[rson]+=(LL)lazy[o]*(LL)(r-mid);
}
lazy[o]=0;
}
void Insert(int o,int l,int r,int L,int R,int c)
{
pushdown(o,l,r);
if(l>=L && r<=R)
{
lazy[o]+=c;
sum[o]+=(LL)(r-l+1)*(LL)lazy[o];
pushdown(o,l,r);
return;
}
if(l>R || r<L)return;
int mid = (l+r)/2;
Insert(lson,l,mid,L,R,c);
Insert(rson,mid+1,r,L,R,c);
sum[o]=sum[lson]+sum[rson];
}
LL query(int o,int l,int r,int L,int R)
{
pushdown(o,l,r);
if(l>=L && r<=R)return sum[o];
if(l>R || r<L)return 0;
int mid = (l+r)/2;
LL ret=query(lson,l,mid,L,R)+query(rson,mid+1,r,L,R);
sum[o]=sum[lson]+sum[rson];
return ret;
}
int main(void)
{
scanf("%d%d",&n,&q);
for(int i = 1; i <= n; i++)
scanf("%d",&a[i]);
build(1,1,n);
for(int i = 0; i < q; i++)
{
scanf("%s%d%d",s,&l,&r);
if(s[0]=='C')
{
scanf("%d",&c);
Insert(1,1,n,l,r,c);
}
else printf("%lld\n",query(1,1,n,l,r));
}
return 0;
}