【BZOJ1251】【splay】序列终结者

第一次用splay做关于数列的题,比一般的splay写法更加麻烦,但是它是基于元素的,而线段树是基于整段区间的,所以在数据范围大而且分散的情况下线段树几乎不能做(Ps:可以考虑离散),这个时候就可以使用splay来维护一个数列。

这道题不能用线段树做的原因不是因为数据范围,而是这道题涉及到了翻转操作,线段树不支持这种操作,所以用splay来维护。

对于每个节点维护val,Max和add表示当前节点的值,区间最大值和懒标记,在旋转的时候需要将标记一起传递,并且 需要注意的是这里的splay并不是二叉查找树,而是区间树,只能用来做一些与区间有关的操作。这道题是splay维护区间的模板题,比较简单,只是需要注意的是初值,一开始都为负无穷,还有在标记传递的时候一定要判断一下左右儿子是否存在,否则会出现统计错误(值增加多次)使答案变得很大。

代码:

#include<cstdio>
#include<cstring>
#define keyTree ch[ ch[root][1] ][0]
using namespace std;
const int maxn = 50000 + 10;
const int inf = 0x3f3f3f3f;
struct SplayTree
{
	int ch[maxn][2],pre[maxn];
	int val[maxn],add[maxn],Max[maxn];
	bool reserve[maxn];
	int sz[maxn];
	int root,top;
	int max(int a,int b)
	{
		return a > b ? a : b;
	}
	void swap(int &a,int &b)
	{
		int t = a;a = b;b = t;
	}
	void push_up(int x)
	{
		sz[x] = sz[ ch[x][0] ] + sz[ ch[x][1] ] + 1;
		Max[x] = max(val[x],max(Max[ ch[x][0] ],Max[ ch[x][1] ]));	
	} 
	void push_down(int x)
	{
		if(add[x])
		{
			if(ch[x][0])
			{
				Max[ ch[x][0] ] += add[x];
				val[ ch[x][0] ] += add[x];
				add[ ch[x][0] ] += add[x];
			}
			if(ch[x][1])
			{
				Max[ ch[x][1] ] += add[x];
				val[ ch[x][1] ] += add[x];
				add[ ch[x][1] ] += add[x];
			}
			add[x] = 0;
		}
		if(reserve[x])
		{
			if(ch[x][0])reserve[ ch[x][0] ] = !reserve[ ch[x][0] ];
			if(ch[x][1])reserve[ ch[x][1] ] = !reserve[ ch[x][1] ];
			swap(ch[x][0],ch[x][1]);
			reserve[x] = false;
		}
	}
	void Rotate(int x,int f)
	{
		int y = pre[x];
		push_down(y);
		push_down(x);
		ch[y][!f] = ch[x][f];
		pre[ ch[x][f] ] = y;
		pre[x] = pre[y];
		if(pre[x])ch[ pre[y] ][ ch[pre[y]][1] == y ] = x;
		ch[x][f] = y;
		pre[y] = x;
		push_up(y);
	}
	void Splay(int x,int goal)
	{
		push_down(x);
		while(pre[x] != goal)
		{
			if(pre[pre[x]] == goal)Rotate(x,ch[pre[x]][0] == x);
			else
			{
				int y = pre[x],z = pre[y];
				int f = (ch[z][0] == y);
				if(ch[y][f] == x)Rotate(x, !f),Rotate(x, f);
				else Rotate(y, f),Rotate(x, f);
			}
		}
		push_up(x);
		if(goal == 0)root = x;
	}
	void RotateTo(int k,int goal)
	{
		int x = root;
		push_down(x);
		while(sz[ ch[x][0] ] != k)
		{
			if(k < sz[ ch[x][0] ])x = ch[x][0];
			else
			{
				k -= (sz[ ch[x][0] ] + 1);
				x = ch[x][1];
			}
			push_down(x);
		}
		Splay(x,goal);
	}
	void update()
	{
		int l,r,c;
		scanf("%d%d%d",&l,&r,&c);
		RotateTo(l-1,0);
		RotateTo(r+1,root);
		val[ keyTree ] += c; 
		Max[ keyTree ] += c;
		add[ keyTree ] += c;
	}
	int query()
	{
		int l,r;
		scanf("%d%d",&l,&r);
		RotateTo(l-1 ,0);
		RotateTo(r+1, root);
		return Max[ keyTree ];
	}
	void turn()
	{
		int l,r;
		scanf("%d%d",&l,&r);
		RotateTo(l-1, 0);
		RotateTo(r+1, root);
		reserve[ keyTree ] = !reserve[ keyTree ];
	}
	void Newnode(int &x,int c)
	{
		x = ++top;
		ch[x][0] = ch[x][1] = pre[x] = 0;
		sz[x] = 1;
		val[x] = Max[x] = c;
		add[x] = 0;
	}
	void makeTree(int &x,int l,int r,int f)
	{
		if(l > r)return;
		int m = (l + r) >> 1;
		Newnode(x,0);
		makeTree(ch[x][0],l,m - 1,x);
		makeTree(ch[x][1],m + 1,r,x);
		pre[x] = f;
		push_up(x);
	}
	void init(int n)
	{
		memset(Max,~0x3f,sizeof(Max));
		memset(val,~0x3f,sizeof(val));
		ch[0][0] = ch[0][1] = pre[0] = sz[0] = 0;
		add[0] = 0;
		root = top = 0;
		Newnode(root, -1);
		Newnode(ch[root][1], -1);
		pre[2] = root;
		sz[root] = 2;
		makeTree(keyTree,1,n,ch[root][1]);
		push_up(ch[root][1]);
		push_up(root);
	}

}Spt;
int n,m;
void init()
{
	freopen("bzoj1251.in","r",stdin);
	freopen("bzoj1251.out","w",stdout);
}

void readdata()
{
	scanf("%d%d",&n,&m);
	Spt.init(n);
	for(int i = 1;i <= m;i++)
	{
		int op;
		scanf("%d",&op);
		if(op == 1)Spt.update();
		if(op == 2)Spt.turn();
		if(op == 3)printf("%d\n",Spt.query());
	}
}

int main()
{
	init();
	readdata();
	return 0;
}


你可能感兴趣的:(【BZOJ1251】【splay】序列终结者)