题目链接:uva 254 - Towers of Hanoi
题目大意:给出n和k,n的范围为0~100, k的范围为0~2^n - 1, 然后模拟汉诺塔游戏移动n个碟子,按照最优的游戏策略,移动了k次后,三个柱子上各有多少个碟子。
注意:如果盘子的总数为奇数,那么移动的目标最终目标位B号柱,否则为C号柱(题目要按照某种序列移动碟子)。
解题思路:递归的思想,每次处理好说当前移动碟子所在的柱子,目标柱子以及中间辅助的柱子,然后枚举当前的步数够移动几个碟子。k很大,用double和long long处理不了,就写了大数。
#include <stdio.h> #include <string.h> #include <math.h> #define max(a,b) (a)>(b)?(a):(b) const int N = 1005; struct bign { int s[N]; bign () { memset(s, 0, sizeof(s)); } bign (int number) {*this = number;} bign (const char* number) {*this = number;} void put(); void del(); bign operator = (char *num) { s[0] = strlen(num); for (int i = 1; i <= s[0]; i++) s[i] = num[s[0] - i] - '0'; return *this; } bign operator = (int num) { char str[N]; sprintf(str, "%d", num); return *this = str; } bool operator < (const bign& b) const { if (s[0] != b.s[0]) return s[0] < b.s[0]; for (int i = s[0]; i; i--) if (s[i] != b.s[i]) return s[i] < b.s[i]; return false; } bool operator > (const bign& b) const { return b < *this; } bool operator <= (const bign& b) const { return !(b < *this); } bool operator >= (const bign& b) const { return !(*this < b); } bool operator != (const bign& b) const { return b < *this || *this < b;} bool operator == (const bign& b) const { return !(b != *this); } bign operator + (const bign& c) { int sum = 0; bign ans; ans.s[0] = max(s[0], c.s[0]); for (int i = 1; i <= ans.s[0]; i++) { if (i <= s[0]) sum += s[i]; if (i <= c.s[0]) sum += c.s[i]; ans.s[i] = sum % 10; sum /= 10; } while (sum) { ans.s[++ans.s[0]] = sum % 10; sum /= 10; } return ans; } bign operator - (bign& c) { bign ans = *this; for (int i = 1; i <= c.s[0]; i++) { if (ans.s[i] < c.s[i]) { ans.s[i] += 10; ans.s[i + 1] -= 1; } ans.s[i] -= c.s[i]; } ans.del(); return ans; } }; bign cnt[105], tmp = 1, over = 0; void init() { cnt[0] = 0; for (int i = 1; i <= 100; i++) cnt[i] = cnt[i - 1] + cnt[i - 1] + tmp; } void hanoi(int n, bign k, int& a, int& b, int& c) { if (k == over) { a += n; return; } for (int i = 1; i <= n; i++) { if (cnt[i] == k) { a += n - i; if (n % 2 == i % 2) c += i; else b += i; return; } else if (cnt[i] > k) { a += n - i; if (n % 2 == i % 2) { c += 1; hanoi(i - 1, k - cnt[i - 1] - tmp, b, a, c); } else { b += 1; hanoi(i - 1, k - cnt[i - 1] - tmp, c, a, b); } return; } } } int main () { init(); int n, a, b, c; bign k; char str[N]; while (scanf("%d%s", &n, str), n || strcmp(str, "0")) { a = b = c = 0; k = str; if (n % 2) hanoi(n, k, a, c, b); else hanoi(n, k, a, b, c); printf("%d %d %d\n", a, b, c); } return 0; } void bign::put() { if (s[0] == 0) printf("0"); else for (int i = s[0]; i; i--) printf("%d", s[i]); } void bign::del() { while (s[s[0]] == 0) { s[0]--; if (s[0] == 0) break; } if (s[0] == 0) { s[0] = 1; s[1] = 0; } }