opencv对图像进行标定

简介

  本篇是使用opencv函数:cvFindChessboardCorners、cvFindCornerSubPix、cvDrawChessboardCorners,来找到、优化并显示出来标定棋盘
图片的角点。
  关于这三个函数得讲解看,可以参考:http://www.360doc.cn/article/10724725_367761079.html

角点检测

具体代码

  具体代码如下:
#include <opencv2/opencv.hpp>
#include <stdio.h>
using namespace cv;
using namespace std;
 
int boardWidth, boardHeight;
int boardTotal;
CvSize boardSize;
CvPoint2D32f * image_points_buf;
Mat srcColor, srcGray;
IplImage srcIp;
CvMat cvmatSrc;
int nowNumber, found;
char* picName;
 
void initFindCorner(){
    boardSize = cvSize(10, 7);
    boardWidth = boardSize.width;   
    boardHeight = boardSize.height;
    boardTotal = boardWidth*boardHeight;
 
    image_points_buf = new CvPoint2D32f[boardTotal];
 
    srcColor = imread(picName);
    imshow("源图像", srcColor);
 
    cvtColor(srcColor, srcGray, COLOR_BGR2GRAY);
    imshow("灰阶图", srcGray);
    srcIp = srcGray;
    cvmatSrc = srcColor;
}
 
void findCornersWork(){
    found=cvFindChessboardCorners(&srcIp, boardSize, image_points_buf, \
                 &nowNumber, CV_CALIB_CB_ADAPTIVE_THRESH|CV_CALIB_CB_FILTER_QUADS);
    printf("捕获角点数量:%d\n", nowNumber);
 
    cvFindCornerSubPix(&srcIp, image_points_buf, nowNumber, cvSize(11,11), cvSize(-1,-1),
                                cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,0.1));
    cvDrawChessboardCorners(&cvmatSrc, boardSize, image_points_buf, nowNumber, found);
    imshow("角点标识图", srcColor);
}
 
int main(int argc, char* argv[]){
 
    if(argc < 2){
        cout << "Please input Picture name !!\n" << endl;
        return -1;
    }
    picName = argv[1];
    initFindCorner();
    findCornersWork();
 
    waitKey();
 
    return 0;
}
代码讲解
  1、初始化
void initFindCorner(){
    boardSize = cvSize(10, 7);
    boardWidth = boardSize.width;   
    boardHeight = boardSize.height;
    boardTotal = boardWidth*boardHeight;
 
    image_points_buf = new CvPoint2D32f[boardTotal];
 
    srcColor = imread(picName);
    imshow("源图像", srcColor);
 
    cvtColor(srcColor, srcGray, COLOR_BGR2GRAY);
    imshow("灰阶图", srcGray);
    srcIp = srcGray;
    cvmatSrc = srcColor;
}
首先设置预先设定图片的角点个数,本例使用的棋盘图片角点个数为:10X7,创建保存角点的结构:image_points_buf,接着导入棋盘图片,
并转为灰阶图像。
  2、角点检测和显示
void findCornersWork(){
    found=cvFindChessboardCorners(&srcIp, boardSize, image_points_buf, \
                 &nowNumber, CV_CALIB_CB_ADAPTIVE_THRESH|CV_CALIB_CB_FILTER_QUADS);
    printf("捕获角点数量:%d\n", nowNumber);
 
    cvFindCornerSubPix(&srcIp, image_points_buf, nowNumber, cvSize(11,11), cvSize(-1,-1),
                                cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,0.1));
    cvDrawChessboardCorners(&cvmatSrc, boardSize, image_points_buf, nowNumber, found);
    imshow("角点标识图", srcColor);
}
    使用cvFindChessboardCorners进行角点检测,检测到的角点保存在image_points_buf,检测到的角点数量保存在nowNumber,如果nowNumber的值,和
实际图片上的角点数量相等,就表示角点检测成功。
  接着cvFindCornerSubPix、cvDrawChessboardCorners将这些检测到的角点位置在图片:cvmatSrc上,显示输出。

结果显示

  显示的结果如下:
        opencv对图像进行标定_第1张图片

畸变校正

  前面已经讲解了如果找到棋盘标点图片的角点,这里在此基础上,继续进行后续的校正处理。
首先是找到多张图片的角点,接着将这些角点导入到函数cvCalibrateCamera2,进行camera内参数矩阵和畸变系数向量的生成。通过cvInitUndistortMap,
利用之前生成的内参数矩阵和畸变向量,计算出畸变映射到mapx和mapy中。最后cvRemap利用mapx、mapy对输入图像进行畸变校正。
  可以参考文档:http://blog.csdn.net/guvcolie/article/details/7454632

具体代码

#include <opencv2/opencv.hpp>
#include <stdio.h>
using namespace cv;
using namespace std;
 
int main(int argc, char* argv[]){
    int cube_length=10;
    int cam_Dx = 100; //横轴方向长度
    int cam_Dy = 100; //纵轴方向长度
    int number_image = 7;
    int a=1;
    int number_image_copy= 7;
    CvSize board_size=cvSize(10,7);
    int board_width=board_size.width;
    int board_height=board_size.height;
    int total_per_image=board_width*board_height;
    CvPoint2D32f * image_points_buf = new CvPoint2D32f[total_per_image];
    CvMat * image_points=cvCreateMat(number_image*total_per_image,2,CV_32FC1);//图像坐标系
    CvMat * object_points=cvCreateMat(number_image*total_per_image,3,CV_32FC1);//世界坐标系
    CvMat * point_counts=cvCreateMat(number_image,1,CV_32SC1); //角点存放位置
    CvMat * intrinsic_matrix=cvCreateMat(3,3,CV_32FC1);  //内参数矩阵
    CvMat * distortion_coeffs=cvCreateMat(4,1,CV_32FC1); //畸变系数向量
    char picName[7][10] = {"1.jpg", "2.jpg", "3.jpg", "4.jpg", "5.jpg", "6.jpg", "7.jpg"};
    IplImage * show;
 
    int count;
    int found;
    int step;
    int successes=0;
 
 
    while(a<=number_image_copy){
        show=cvLoadImage(picName[a-1],-1);
     
        found=cvFindChessboardCorners(show,board_size,image_points_buf,&count,
                CV_CALIB_CB_ADAPTIVE_THRESH|CV_CALIB_CB_FILTER_QUADS);
        if(found==0){      
            cout<<"第"<<a<<"帧图片无法找到棋盘格所有角点!\n\n";
            cvNamedWindow("RePlay",1);
            cvShowImage("RePlay",show);
            cvWaitKey(0);
 
        }else{
            cout<<"第"<<a<<"帧图像成功获得"<<count<<"个角点...\n";
 
            IplImage * gray_image= cvCreateImage(cvGetSize(show),8,1);
 
            cvCvtColor(show,gray_image,CV_BGR2GRAY);
 
            cout<<"获取源图像灰度图过程完成...\n";
            cvFindCornerSubPix(gray_image,image_points_buf,count,cvSize(11,11),cvSize(-1,-1),
                cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,0.1));
            cout<<"灰度图亚像素化过程完成...\n";
            cvDrawChessboardCorners(show,board_size,image_points_buf,count,found);
            cout<<"在源图像上绘制角点过程完成...\n\n";
        }
 
        if(total_per_image==count){
            step=successes*total_per_image;
            for(int i=step,j=0;j<total_per_image;++i,++j){
                CV_MAT_ELEM(*image_points,float,i,0)=image_points_buf[j].x; 
 
                CV_MAT_ELEM(*image_points,float,i,1)=image_points_buf[j].y;// 求完每个角点横纵坐标值都存在image_point_buf里
                CV_MAT_ELEM(*object_points,float,i,0)=(float)((j/cube_length) * cam_Dx);
                CV_MAT_ELEM(*object_points,float,i,1)=(float)((j%cube_length) * cam_Dy);
                CV_MAT_ELEM(*object_points,float,i,2)=0.0f;
            }
            CV_MAT_ELEM(*point_counts,int,successes,0)=total_per_image;
            successes++;
        }
        a++;
    }
    cout<<"*********************************************\n";
    cout<<number_image<<"帧图片中,标定成功的图片为"<<successes<<"帧...\n";
    cout<<number_image<<"帧图片中,标定失败的图片为"<<number_image-successes<<"帧...\n\n";
    cout<<"*********************************************\n\n";
 
    IplImage * show_colie;
    show_colie = show;
 
 
    CvMat * object_points2=cvCreateMat(successes*total_per_image,3,CV_32FC1);
 
    CvMat * image_points2=cvCreateMat(successes*total_per_image,2,CV_32FC1);
    CvMat * point_counts2=cvCreateMat(successes,1,CV_32SC1);
    for(int i=0;i<successes*total_per_image;++i){
        CV_MAT_ELEM(*image_points2,float,i,0)=CV_MAT_ELEM(*image_points,float,i,0);//用来存储角点提取成功的图像的角点
        CV_MAT_ELEM(*image_points2,float,i,1)=CV_MAT_ELEM(*image_points,float,i,1);
        CV_MAT_ELEM(*object_points2,float,i,0)=CV_MAT_ELEM(*object_points,float,i,0);
        CV_MAT_ELEM(*object_points2,float,i,1)=CV_MAT_ELEM(*object_points,float,i,1);
        CV_MAT_ELEM(*object_points2,float,i,2)=CV_MAT_ELEM(*object_points,float,i,2);
    }
 
    for(int i=0;i<successes;++i){
        CV_MAT_ELEM(*point_counts2,int,i,0)=CV_MAT_ELEM(*point_counts,int,i,0);
    }
 
 
    cvReleaseMat(&object_points);
    cvReleaseMat(&image_points);
    cvReleaseMat(&point_counts);
 
    CV_MAT_ELEM(*intrinsic_matrix,float,0,0)=1.0f;
    CV_MAT_ELEM(*intrinsic_matrix,float,1,1)=1.0f;
 
    cvCalibrateCamera2(object_points2,image_points2,point_counts2,cvGetSize(show_colie),
            intrinsic_matrix,distortion_coeffs,NULL,NULL,0);
 
    cvSave("Intrinsics.xml",intrinsic_matrix);
    cvSave("Distortion.xml",distortion_coeffs);
 
    cout<<"摄像机矩阵、畸变系数向量已经分别存储在名为Intrinsics.xml、Distortion.xml文档中\n\n";
 
    CvMat * intrinsic=(CvMat *)cvLoad("Intrinsics.xml");
    CvMat * distortion=(CvMat *)cvLoad("Distortion.xml");
 
    IplImage * mapx=cvCreateImage(cvGetSize(show_colie),IPL_DEPTH_32F,1);
    IplImage * mapy=cvCreateImage(cvGetSize(show_colie),IPL_DEPTH_32F,1);
 
    cvInitUndistortMap(intrinsic,distortion,mapx,mapy);
 
    cvNamedWindow("原始图像",1);
    cvNamedWindow("非畸变图像",1);
 
    show_colie = cvLoadImage(argv[1],-1);
    IplImage * clone=cvCloneImage(show_colie);
    cvShowImage("原始图像",show_colie);
    cvRemap(clone,show_colie,mapx,mapy);
    cvReleaseImage(&clone);
    cvShowImage("非畸变图像",show_colie);
 
    cvWaitKey(0);
 
    return 0;
}

代码讲解

  1、首先这里是使用了了7张棋盘图片用来标定,所以cvFindChessboardCorners函数,会依次寻找7次角点。如果找到角点成功,则将对应结果保存到
image_points、object_points中,注意保存到object_points的时候需要做计算:(float)((j/cube_length) * cam_Dx);
while(a<=number_image_copy){
    show=cvLoadImage(picName[a-1],-1);
 
    found=cvFindChessboardCorners(show,board_size,image_points_buf,&count,
            CV_CALIB_CB_ADAPTIVE_THRESH|CV_CALIB_CB_FILTER_QUADS);
    if(found==0){      
        cout<<"第"<<a<<"帧图片无法找到棋盘格所有角点!\n\n";
        cvNamedWindow("RePlay",1);
        cvShowImage("RePlay",show);
        cvWaitKey(0);
 
    }else{
        cout<<"第"<<a<<"帧图像成功获得"<<count<<"个角点...\n";
 
        IplImage * gray_image= cvCreateImage(cvGetSize(show),8,1);
 
        cvCvtColor(show,gray_image,CV_BGR2GRAY);
 
        cout<<"获取源图像灰度图过程完成...\n";
        cvFindCornerSubPix(gray_image,image_points_buf,count,cvSize(11,11),cvSize(-1,-1),
            cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,0.1));
        cout<<"灰度图亚像素化过程完成...\n";
        cvDrawChessboardCorners(show,board_size,image_points_buf,count,found);
        cout<<"在源图像上绘制角点过程完成...\n\n";
    }
 
    if(total_per_image==count){
        step=successes*total_per_image;
        for(int i=step,j=0;j<total_per_image;++i,++j){
            CV_MAT_ELEM(*image_points,float,i,0)=image_points_buf[j].x; 
 
            CV_MAT_ELEM(*image_points,float,i,1)=image_points_buf[j].y;// 求完每个角点横纵坐标值都存在image_point_buf里
            CV_MAT_ELEM(*object_points,float,i,0)=(float)((j/cube_length) * cam_Dx);
            CV_MAT_ELEM(*object_points,float,i,1)=(float)((j%cube_length) * cam_Dy);
            CV_MAT_ELEM(*object_points,float,i,2)=0.0f;
        }
        CV_MAT_ELEM(*point_counts,int,successes,0)=total_per_image;
        successes++;
    }
    a++;
}
    其中successes用来保存,需找角点成功的次数,如果7次都成功,则successes为7。
  2、将找到的角点信息,重新存储到image_points2和object_points2中,利用cvCalibrateCamera2来计算矩阵、向量系数到intrinsic_matrix、distortion_coeffs,本保存到本地文件。
IplImage * show_colie;
show_colie = show;
 
 
CvMat * object_points2=cvCreateMat(successes*total_per_image,3,CV_32FC1);
 
CvMat * image_points2=cvCreateMat(successes*total_per_image,2,CV_32FC1);
CvMat * point_counts2=cvCreateMat(successes,1,CV_32SC1);
for(int i=0;i<successes*total_per_image;++i){
    CV_MAT_ELEM(*image_points2,float,i,0)=CV_MAT_ELEM(*image_points,float,i,0);//用来存储角点提取成功的图像的角点
    CV_MAT_ELEM(*image_points2,float,i,1)=CV_MAT_ELEM(*image_points,float,i,1);
    CV_MAT_ELEM(*object_points2,float,i,0)=CV_MAT_ELEM(*object_points,float,i,0);
    CV_MAT_ELEM(*object_points2,float,i,1)=CV_MAT_ELEM(*object_points,float,i,1);
    CV_MAT_ELEM(*object_points2,float,i,2)=CV_MAT_ELEM(*object_points,float,i,2);
}
 
for(int i=0;i<successes;++i){
    CV_MAT_ELEM(*point_counts2,int,i,0)=CV_MAT_ELEM(*point_counts,int,i,0);
}
 
 
cvReleaseMat(&object_points);
cvReleaseMat(&image_points);
cvReleaseMat(&point_counts);
 
CV_MAT_ELEM(*intrinsic_matrix,float,0,0)=1.0f;
CV_MAT_ELEM(*intrinsic_matrix,float,1,1)=1.0f;
 
cvCalibrateCamera2(object_points2,image_points2,point_counts2,cvGetSize(show_colie),
        intrinsic_matrix,distortion_coeffs,NULL,NULL,0);
 
cvSave("Intrinsics.xml",intrinsic_matrix);
cvSave("Distortion.xml",distortion_coeffs);
  3、函数cvInitUndistortMap和cvRemap,通过之前计算的矩阵、向量系数,对需要校正的图像:show_colie进行处理,并分别显示出来。
IplImage * mapx=cvCreateImage(cvGetSize(show_colie),IPL_DEPTH_32F,1);
IplImage * mapy=cvCreateImage(cvGetSize(show_colie),IPL_DEPTH_32F,1);
 
cvInitUndistortMap(intrinsic,distortion,mapx,mapy);
 
cvNamedWindow("原始图像",1);
cvNamedWindow("非畸变图像",1);
 
show_colie = cvLoadImage(argv[1],-1);
IplImage * clone=cvCloneImage(show_colie);
cvShowImage("原始图像",show_colie);
cvRemap(clone,show_colie,mapx,mapy);
cvReleaseImage(&clone);
cvShowImage("非畸变图像",show_colie);
video畸变校正
  在之前的基础上,修改被校正的输入即可,简单的话,在前一个例子中,将如下代码:
    IplImage * mapx=cvCreateImage(cvGetSize(show_colie),IPL_DEPTH_32F,1);
    IplImage * mapy=cvCreateImage(cvGetSize(show_colie),IPL_DEPTH_32F,1);
 
    cvInitUndistortMap(intrinsic,distortion,mapx,mapy);
 
    cvNamedWindow("原始图像",1);
    cvNamedWindow("非畸变图像",1);
 
    show_colie = cvLoadImage(argv[1],-1);
    IplImage * clone=cvCloneImage(show_colie);
    cvShowImage("原始图像",show_colie);
    cvRemap(clone,show_colie,mapx,mapy);
    cvReleaseImage(&clone);
    cvShowImage("非畸变图像",show_colie);
</source lang>
 
   替换为:
<source lang="cpp" line>
    VideoCapture capture(argv[1]);
    if (!capture.isOpened()){
        return 0;
    }
    while(1){
        if (!capture.read(frame)){
            break;
        }
        ipFrame = frame;
        IplImage * clone=cvCloneImage(&ipFrame);
        cvShowImage("原始图像", &ipFrame);
        cvRemap(clone,show_colie,mapx,mapy);
        cvReleaseImage(&clone);
        cvShowImage("非畸变图像", show_colie);
 
        if (waitKey(5) == 'q'){
            break;
        }
    }
   就是将被校正的图像修改为,从video中获取,循环校正显示。

效果演示

  对应的图片畸变校正效果如下:
     opencv对图像进行标定_第2张图片
                   原图像                                      校正后图像
代码下载:http://download.csdn.net/detail/u011630458/9268829

你可能感兴趣的:(opencv,图像处理,标定校正)