题目链接:http://codeforces.com/problemset/problem/220/C
题目大意:
a为长度为n的不变的串,b为长度为n的可循环左移的串.
a,b均由1~n组成,每个数在每串中用一次.
a串与b串的值为min{ |i-j| },ai==bj
求所有bi,bi+1...bn,bn-1...b1,与a串的值.
题目思路:
1<=n<=100000,朴素算法O(n^2)肯定不行,所以想到了O(nlogn)的线段树,纠结了很久,搞出个维护绝对值的最小值,但是表示没有任何想法= =...
之后发现对于每次操作,要么是某些数+1,要么是某些数-1(首个数除外)...本来还想用线段树来写,写着写着发现怎么看怎么像优先队列+延迟标记...
代码:
#include <stdlib.h> #include <string.h> #include <stdio.h> #include <ctype.h> #include <math.h> #include <stack> #include <queue> #include <map> #include <set> #include <vector> #include <string> #include <iostream> #include <algorithm> using namespace std; #define ll long long #define ls rt<<1 #define rs ls|1 #define lson l,mid,ls #define rson mid+1,r,rs #define middle (l+r)>>1 #define eps (1e-9) #define type int #define clr_all(x,c) memset(x,c,sizeof(x)) #define clr(x,c,n) memset(x,c,sizeof(x[0])*(n+1)) #define MOD 1000000007 #define inf 0x3f3f3f3f #define pi acos(-1.0) template <class T> void _swap(T &x,T &y){T t=x;x=y;y=t;} template <class T> T _max(T x,T y){return x>y? x:y;} template <class T> T _min(T x,T y){return x<y? x:y;} int test,cas; const int M=100000 +5; int n,m; int ap[M],b[M],cur[M]; struct node{ int id,cur,num; node(){} node(int _i,int _c,int _n){id=_i,cur=_c,num=_n;} bool operator < (const node& t) const{ return num > t.num; } }; priority_queue<node>rgt,lft; int covr,covl; void run(){ int i,j; for(i=1;i<=n;i++){ scanf("%d",&j); ap[j]=i; } while(!rgt.empty()) rgt.pop(); while(!lft.empty()) lft.pop(); clr(cur,0,n+1); for(i=1;i<=n;i++){ scanf("%d",&b[i]); if(i>ap[b[i]]) rgt.push(node(b[i],0,i-ap[b[i]])); else lft.push(node(b[i],0,ap[b[i]]-i)); } covr=covl=0; node r,l; for(i=1;;i++){ while(!rgt.empty()){ r=rgt.top(); if(r.cur!=cur[r.id]) rgt.pop(); else if(r.num+covr==0){ rgt.pop(); lft.push(node(r.id,r.cur,-covl)); }else break; } while(!lft.empty()){ l=lft.top(); if(l.cur!=cur[l.id]) lft.pop(); else break; } int ans=inf; if(!rgt.empty()) ans=_min(ans,rgt.top().num+covr); if(!lft.empty()) ans=_min(ans,lft.top().num+covl); printf("%d\n",ans); if(i==n) break; covr--,covl++; cur[b[i]]++; if(n>ap[b[i]]) rgt.push(node(b[i],cur[b[i]],n-ap[b[i]]-covr)); else lft.push(node(b[i],cur[b[i]],-covl)); } } void preSof(){ } int main(){ //freopen("input.txt","r",stdin); //freopen("output.txt","w",stdout); preSof(); //run(); while(~scanf("%d",&n)) run(); //for(scanf("%d",&test),cas=1;cas<=test;cas++) run(); return 0; }