蓝桥杯 波动数列 (DP&滚动数组 好题)

  历届试题 波动数列  
时间限制:1.0s   内存限制:256.0MB
     
问题描述
  观察这个数列:
  1 3 0 2 -1 1 -2 ...

  这个数列中后一项总是比前一项增加2或者减少3。

  栋栋对这种数列很好奇,他想知道长度为 n 和为 s 而且后一项总是比前一项增加a或者减少b的整数数列可能有多少种呢?
输入格式
  输入的第一行包含四个整数 n s a b,含义如前面说述。
输出格式
  输出一行,包含一个整数,表示满足条件的方案数。由于这个数很大,请输出方案数除以100000007的余数。
样例输入
4 10 2 3
样例输出
2
样例说明
  这两个数列分别是2 4 1 3和7 4 1 -2。
数据规模和约定
  对于10%的数据,1<=n<=5,0<=s<=5,1<=a,b<=5;
  对于30%的数据,1<=n<=30,0<=s<=30,1<=a,b<=30;
  对于50%的数据,1<=n<=50,0<=s<=50,1<=a,b<=50;
  对于70%的数据,1<=n<=100,0<=s<=500,1<=a, b<=50;
  对于100%的数据,1<=n<=1000,-1,000,000,000<=s<=1,000,000,000,1<=a, b<=1,000,000。
//这么屌的题,我是肯定不会的,下面贴一下大神的思路:
1.按照题目要求,最终得到的序列的长度为n,和为s,并且后一项是前一项加a或减b,我们不妨将这个操作封装在一起,记作P操作,即P=(a,-b)。

2.设首项为x,可以得到一个等式x+(x+P)+(x+2P)+...+(x+(n-1)P)=s,将这个式子整理一下,就是nx+P+2P+...+(n-1)P=s,即(s-(P+2P+...+(n-1)P))/n=x。

3.由题意,x肯定是一个整数,并且由于每一个P代表一个a或者一个-b,所以a和b的总数为n*(n-1)/2,也就是说只要确定了a的个数,那么b的个数也就确定了。

4.关键问题是对于一个确定的a的个数,方案不只有一种,而且a的个数肯定是由(1,2,3,...,n-1)这其中的若干项组成的,,我们把这些项看作元素,第i个元素的权值为i于是,下面就开始构造递推方程

5.首先,定义一个数组dp[i][j],表示前i个元素组成和为j的序列的方案数,这里的和j表示的是所有的a的和,很明显当i!=0时dp[i][0]=1,当j!=0时dp[0][j]=0,然后我们要分两种情况讨论
(1)、i>j时,因为每一个元素i权值都是i,所以当元素的个数大于和的时候,第i个元素的权值已经超过了和,所以第i个元素绝对不能使用,即dp[i][j]=dp[i-1][j]。
(2)、i<=j时,第i个元素的权值是小于等于和的,所以可以用,也可以不用,如果不用,那么就是dp[i-1][j],如果用,就是dp[i-1][j-i],这个有点类似于01背包,所以
dp[i][j]=dp[i-1][j]+dp[i-1][j-i]。

OK,通过上面的分析,我们得到了递推方程,但还有一个问题,就是空间的问题,题目给出的i的最大值达到1000,相应的j也就是1000^2,我们是不可能开出这么大的数组的,观察递推方程,我们可以看出下一个状态只和前一个状态有关,而且我们实际上只需要最后一个状态即,dp
[j],于是可以使用滚动数组。
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<algorithm>
#define INF 0x3f3f3f3f
#define IN __int64
#define ull unsigned long long
#define ll long long
#define N 1010
#define M 100000007
using namespace std;
ll n,s,a,b;
int c[2][N*N];
int g;
int cnt;
void DP()
{
	int i,j;
	g=0;
	memset(c,0,sizeof(c));
	c[g][0]=1;
	for(i=1;i<n;i++)
	{
		g=1-g;
		for(j=0;j<=i*(i+1)/2;j++)
		{
			if(i>j)
				c[g][j]=c[1-g][j];
			else
				c[g][j]=(c[1-g][j]+c[1-g][j-i])%M;
		}
	}
}
int main()
{
	while(scanf("%lld%lld%lld%lld",&n,&s,&a,&b)!=EOF)
	{
		cnt=0;
		DP();
		ll i,t;
		for(i=0;i<=n*(n-1)/2;i++)
		{
			t=s-i*a+(n*(n-1)/2-i)*b;
			if(t%n==0)
				cnt=(cnt+c[g][i])%M;
		}
		printf("%d\n",cnt);
	}
	return 0;
}

你可能感兴趣的:(蓝桥杯 波动数列 (DP&滚动数组 好题))