Why and When Perceptron Halts?

Pereceptron Learning Algorithm (PLA) is a binary classifier which can partition the linear separable points into two classes. 


Based on the Perceptron Convergence Theorem, we have:

For any finite set of linearly separable labeled examples, the PLA will halt after a finite number of iterations.


But why and when perceptron halts? 


Next, we will prove the Perceptron Convergence Theorem step by step.

Notations:

 : the weight of  step

: the example point used at  step

: the perfect weight corresponding to the target function, which means 

: the angle between 

: the cos value of angle between 

: margin, i.e. the Euclidean distance of the point  from the plane , where  is strictly positive since all points are classified correctly. 

: the minimal margin relative to the separation hyperplane . 


Assume at the  step, , then the weight   is updated by . 

So we have , and .


Then the numerator of  is: 


After applying the above inequality above n times, starting from , to get  (here we get the numerator of  )


If n is large enough, then we have 


Consider the denominator of  , 

where 


Apply the above inequality n times, we get



if n is large enough, then we get  (here we get the denominator of  )


Based on the inequality of both numerator and denominator of , we get 


We also know , so  and 


Now we get the maximum step is less than 


你可能感兴趣的:(Why and When Perceptron Halts?)