注意,此实现不是同步的。如果多个线程同时访问一个ArrayList实例,而其中至少一个线程从结构上修改了列表,那么它必须保持外部同步
ArrayList定义类4个私有属性:
/** * Default initial capacity. 默认初始容量 */ private static final int DEFAULT_CAPACITY = 10; //空数组,当调用无参数构造函数的时候默认给个空数组 private static final Object[] EMPTY_ELEMENTDATA = {}; //这才是真正保存数据的数组 private transient Object[] elementData; //arrayList的实际元素数量 private int size;
很容易理解,elementData存储ArrayList内的元素,size表示它包含的元素的数量。
有个关键字需要解释:transient。
Java的serialization提供了一种持久化对象实例的机制。当持久化对象时,可能有一个特殊的对象数据成员,我们不想用serialization机制来保存它。为了在一个特定对象的一个域上关闭serialization,可以在这个域前加上关键字transient。有点抽象,看下Java关键字transient应该能明白。
transient修饰符让elementData无法自动序列化,这样的原因是,数组内存储的的元素其实只是一个引用,单单序列化一个引用没有任何意义,反序列化后这些引用都无法在指向原来的对象。ArrayList使用writeObject()实现手工序列化数组内的元素。
private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException{ int expectedModCount = modCount; s.defaultWriteObject(); s.writeInt(elementData.length); for (int i=0; i<size; i++) s.writeObject(elementData[i]); if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } }
ArrayList提供了三种方式的构造器,可以构造一个默认初始容量为10的空列表、构造一个指定初始容量的空列表以及构造一个包含指定collection的元素的列表,这些元素按照该collection的迭代器返回它们的顺序排列的。
// ArrayList带容量大小的构造函数。 public ArrayList(int initialCapacity) { super(); if (initialCapacity < 0) throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity); // 新建一个指定容量的数组</span> this.elementData = new Object[initialCapacity]; } // ArrayList无参构造函数。默认容量是10。 public ArrayList() { super(); this.elementData = EMPTY_ELEMENTDATA; } //构造方法传入一个Collection, 则将Collection里面的值copy到arrayList public ArrayList(Collection<? extends E> c) { elementData = c.toArray(); size = elementData.length; // c.toArray might (incorrectly) not return Object[] (see 6260652) if (elementData.getClass() != Object[].class) elementData = Arrays.copyOf(elementData, size, Object[].class); }
ArrayList提供了set(int index, E element)、add(E e)、add(int index, E element)、addAll(Collection<? extends E> c)、addAll(int index, Collection<? extends E> c)这些添加元素的方法。下面我们一一讲解:
3.1、set(int index, E element): 用指定的元素替代此列表中指定位置上的元素,并返回以前位于该位置上的元素。
public E set(int index, E element) { rangeCheck(index); E oldValue = elementData(index); elementData[index] = element; return oldValue; } private void rangeCheck(int index) { if (index > size || index < 0) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private String outOfBoundsMsg(int index) { return "Index: "+index+", Size: "+size; }
3.2、add(E e): 将指定的元素添加到此列表的尾部。
数组进行扩容时,会将老数组中的元素重新拷贝一份到新的数组中,每次数组容量的增长大约是其原容量的1.5倍。这种操作的代价是很高的,因此在实际使用时,我们应该尽量避免数组容量的扩张。所以在初始化ArrayList的时候尽量预算下大致的容量需求,降低平凡调整容量的开销。
public boolean add(E e) { ensureCapacityInternal(size + 1); // Increments modCount!! elementData[size++] = e; return true; } private void ensureCapacityInternal(int minCapacity) { //确保内部容量 if (elementData == EMPTY_ELEMENTDATA) { minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity); } ensureExplicitCapacity(minCapacity); } protected transient int modCount = 0; //抽象类AbstractList定义的 private void ensureExplicitCapacity(int minCapacity) { modCount++; //超出了数组可容纳的长度,需要进行动态扩展!!! if (minCapacity - elementData.length > 0) grow(minCapacity); } //这才是动态扩展的精髓,看到这个方法,ArrayList瞬间被打回原形!!!!1 private void grow(int minCapacity) { // overflow-conscious code int oldCapacity = elementData.length; //设置新数组的容量扩展为原来数组的1.5倍 int newCapacity = oldCapacity + (oldCapacity >> 1); //再判断一下新数组的容量够不够,够了就直接使用这个长度创建新数组, //不够就将数组长度设置为需要的长度 if (newCapacity - minCapacity < 0) newCapacity = minCapacity; //判断有没超过最大限制 if (newCapacity - MAX_ARRAY_SIZE > 0) newCapacity = hugeCapacity(minCapacity); //将原来数组的值copy新数组中去, ArrayList的引用指向新数组 //这儿会新创建数组,如果数据量很大,重复的创建的数组,那么还是会影响效率, //因此鼓励在合适的时候通过构造方法指定默认的capaticy大小 elementData = Arrays.copyOf(elementData, newCapacity); } //检查容量的int值是不是已经溢出 private static int hugeCapacity(int minCapacity) { if (minCapacity < 0) // overflow throw new OutOfMemoryError(); return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE; }3.3、add(int index, E element) : 将指定的元素插入此列表中的指定位置。如果当前位置有元素,则向右移动当前位于该位置的元素以及所有后续元素(将其索引加1)。
//size表示的是现有的元素个数,并非ArrayList的容量,容量应该是数组elementData的长度。 private int size; public void add(int index, E element) { rangeCheckForAdd(index); // 如果数组长度不足,将进行扩容。 方法同上 ensureCapacityInternal(size + 1); //Increments modCount!! // 将 elementData中从Index位置开始、长度为size-index的元素, // 拷贝到从下标为index+1位置开始的新的elementData数组中。 // 即将当前位于该位置的元素以及所有后续元素右移一个位置。 System.arraycopy(elementData, index, elementData, index + 1, size - index); elementData[index] = element; size++; } //比set方法里的rangeCheck(int index)多index < 0,索引不能小于0 private void rangeCheckForAdd(int index) { if (index > size || index < 0) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); }3.4、addAll(Collection<? extends E> c): 按照指定collection的迭代器所返回的元素顺序,将该collection中的所有元素添加到此列表的尾部。
public boolean addAll(Collection<? extends E> c) { Object[] a = c.toArray(); int numNew = a.length; ensureCapacityInternal(size + numNew); // Increments modCount System.arraycopy(a, 0, elementData, size, numNew); size += numNew; return numNew != 0; }
3.5、addAll(int index, Collection<? extends E> c): 从指定的位置开始,将指定collection中的所有元素插入到此列表中。
public boolean addAll(int index, Collection<? extends E> c) { rangeCheckForAdd(index); Object[] a = c.toArray(); int numNew = a.length; ensureCapacityInternal(size + numNew); // Increments modCount int numMoved = size - index; if (numMoved > 0) System.arraycopy(elementData, index, elementData, index + numNew, numMoved); System.arraycopy(a, 0, elementData, index, numNew); size += numNew; return numNew != 0; }
// 返回此列表中指定位置上的元素。 <pre name="code" class="java"> public E get(int index) { rangeCheck(index); return elementData(index); } <pre name="code" class="java"> @SuppressWarnings("unchecked") E elementData(int index) { return (E) elementData[index]; }
public E remove(int index) { rangeCheck(index); modCount++; E oldValue = elementData(index); int numMoved = size - index - 1; if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--size] = null; // clear to let GC do its work return oldValue; }2、remove(Object o) : 移除此列表中首次出现的指定元素(如果存在)。即ArrayList中允许存放重复的元素
public boolean remove(Object o) { // 由于ArrayList中允许存放null,因此下面通过两种情况来分别处理。 if (o == null) { for (int index = 0; index < size; index++) if (elementData[index] == null) { // 类似remove(int index),移除列表中指定位置上的元素 fastRemove(index); return true; } } else { for (int index = 0; index < size; index++) if (o.equals(elementData[index])) { fastRemove(index); return true; } } return false; }
private void fastRemove(int index) { modCount++; int numMoved = size - index - 1; if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--size] = null; // clear to let GC do its work }
3、removeRange(int fromIndex,int toIndex):
protected void removeRange(int fromIndex, int toIndex) { modCount++; int numMoved = size - toIndex; System.arraycopy(elementData, toIndex, elementData, fromIndex, numMoved); // clear to let GC do its work int newSize = size - (toIndex-fromIndex); for (int i = newSize; i < size; i++) { elementData[i] = null; } size = newSize; }
ensureCapacity(int minCapacity) : 从上面介绍的向ArrayList中存储元素的代码中,我们看到,每当向数组中添加元素时,都要去检查添加后元素的个数是否会超出当前数组的长度,如果超出,数组将会进行扩容,以满足添加数据的需求。数组扩容通过一个公开的方法ensureCapacity(int minCapacity)来实现。在实际添加大量元素前,我也可以使用ensureCapacity来手动增加ArrayList实例的容量,以减少递增式再分配的数量。
public void ensureCapacity(int minCapacity) { if (minCapacity > 0) ensureCapacityInternal(minCapacity); }数组进行扩容时,会将老数组中的元素重新拷贝一份到新的数组中,每次数组容量的增长大约是其原容量的1.5倍。这种操作的代价是很高的,因此在实际使用时,我们应该尽量避免数组容量的扩张。 所以在初始化ArrayList的时候尽量预算下大致的容量需求,降低平凡调整容量的开销。 当我们可预知要保存的元素的多少时,要在构造ArrayList实例时,就指定其容量,以避免数组扩容的发生。或者根据实际需求,通过调用ensureCapacity方法来手动增加ArrayList实例的容量。
void trimToSize() : 将底层数组的容量调整为当前列表保存的实际元素的大小的功能。
由于elementData的长度会被拓展,size标记的是其中包含的元素的个数。所以会出现size很小但elementData.length很大的情况,将出现空间的浪费。trimToSize将返回一个新的数组给elementData,元素内容保持不变,length和size相同,节省空间。
public void trimToSize() { modCount++; int oldCapacity = elementData.length; if (size < oldCapacity) { elementData = Arrays.copyOf(elementData, size); } }
关于ArrayList和Vector区别如下:
ArrayList在内存不够时默认是扩展50% + 1个,Vector是默认扩展1倍。
Vector提供indexOf(obj, start)接口,ArrayList没有。
Vector属于线程安全级别的,但是大多数情况下不使用Vector,因为线程安全需要更大的系统开销。
7.1、Object[] toArray(), 调用Arrays.copyOf将返回一个数组,数组内容是size个elementData的元素,即拷贝elementData从0至size-1位置的元素到新数组并返回。
public Object[] toArray() { return Arrays.copyOf(elementData, size); }
@SuppressWarnings("unchecked") public <T> T[] toArray(T[] a) { if (a.length < size) // Make a new array of a's runtime type, but my contents: return (T[]) Arrays.copyOf(elementData, size, a.getClass()); System.arraycopy(elementData, 0, a, 0, size); if (a.length > size) a[size] = null; return a; }
ArrayList也采用了快速失败的机制,通过记录modCount参数来实现。在面对并发的修改时,迭代器很快就会完全失败,而不是冒着在将来某个不确定时间发生任意不确定行为的风险。具体介绍请参考这篇文章深入Java集合学习系列:HashMap的实现原理 中的Fail-Fast机制。
关于ArrayList的源码,给出几点比较重要的总结:
1、注意其三个不同的构造方法。无参构造方法构造的ArrayList的容量默认为10,带有Collection参数的构造方法,将Collection转化为数组赋给ArrayList的实现数组elementData。
2、注意扩充容量的方法ensureCapacity。ArrayList在每次增加元素(可能是1个,也可能是一组)时,都要调用该方法来确保足够的容量。当容量不足以容纳当前的元素个数时,就设置新的容量为旧的容量的1.5倍加1,如果设置后的新容量还不够,则 直接新容量设置为传入的参数(也就是所需的容量),而后用Arrays.copyof()方法将元素拷贝到新的数组(详见下面的第3点)。从中可以看出,当容量不够时,每次增加元素,都要将原来的元素拷贝到一个新的数组中,非常之耗时,也因此建议在事先能确定元素数量的情况下,才使用ArrayList,否则建议使用LinkedList。
3、ArrayList的实现中大量地调用了Arrays.copyof()和System.arraycopy()方法。我们有必要对这两个方法的实现做下深入的了解。
4、ArrayList基于数组实现,可以通过下标索引直接查找到指定位置的元素,因此查找效率高,但每次插入或删除元素,就要大量地移动元素,插入删除元素的效率低。
5、在查找给定元素索引值等的方法中,源码都将该元素的值分为null和不为null两种情况处理,ArrayList中允许元素为null。