- 多层感知机(MLP)全面指南
MobiCetus
强化学习开发语言java算法c++pythoneclipsegithub
多层感知机(MLP)是一种人工神经网络,由多个神经元层组成。MLP中的神经元通常使用非线性激活函数,使得网络能够学习数据中的复杂模式。MLP在机器学习中非常重要,因为它能够学习数据中的非线性关系,使其成为分类、回归和模式识别等任务中的强大模型。神经网络基础神经网络或人工神经网络是机器学习中的基本工具,支持着许多最先进的算法和应用,广泛应用于计算机视觉、自然语言处理、机器人技术等领域。一个神经网络由
- (4)绪论三:归纳偏好
在下_诸葛
《机器学习》算法机器学习数据挖掘
通过学习得到的一个模型对应了假设空间的一个假设(这是上节假设空间的内容)归纳偏好或偏好:机器学习算法在学习过程中对某种类型假设的偏好(对于一个新西瓜来说:让一个训练好的模型来判断它为好瓜还是坏瓜?可以根据某种特征判断它为好瓜,也可以根据另外一种特征判断它为坏瓜,归纳偏好就是看哪一个特征更为重要,从而根据比例将新西瓜进行分类)如果没要偏好,说明两种特征都一样重要,这时模型对新西瓜的预测,时而判断它是
- AI时代,程序员会被取代吗?
有个人神神叨叨
人工智能
一、当编程史遇见AI:一场持续百年的范式革命从1945年ENIAC计算机需要物理接线编程,到ChatGPT用自然语言生成代码,编程技术经历了三次重大跃迁:硬件抽象层(1940s-1950s)从打孔卡到汇编语言,程序员摆脱物理电路操作算法抽象层(1950s-1990s)Fortran/Java等高级语言让编程聚焦逻辑而非机器指令意图抽象层(2020s-)GitHubCopilot等工具实现"所想即所
- 毕设成品 opencv图像增强算法系统
m0_71572237
毕业设计python毕设
文章目录0简介1.基于直方图均衡化的图像增强2\.基于拉普拉斯算子的图像增强4\.基于伽马变换的图像增强软件实现效果最后0简介今天学长向大家分享一个毕业设计项目毕业设计opencv图像增强算法系统项目运行效果:毕业设计基于机器视觉的图像增强项目分享:见文末!1.基于直方图均衡化的图像增强直方图均衡化是通过调整图像的灰阶分布,使得在0~255灰阶上的分布更加均衡,提高了图像的对比度,达到改善图像主观
- 毕设成品 基于机器学习的乳腺癌数据分析
m0_71572237
毕业设计python毕设
文章目录0简介模型评估KNNClassifierLogisticRegressionClassifierRandomForestClassifierDecisionTreeClassifierGBDT(GradientBoostingDecisionTree)ClassifierAdaBoostBaggingSVM最后0简介今天学长向大家分享一个毕业设计项目毕业设计基于机器学习的乳腺癌数据分析项目
- Dify知识库搭建:MinerU——将PDF转化为markdown实际体验
几道之旅
Dify与Langflow智能体(Agent)知识库pdfdocker自然语言处理
文章目录MinerU是啥?为什么要把PDF转化为markdown?这个dify还有知识库之间有啥关系?安装MinerU是啥?MinerU是一款将PDF转化为机器可读格式的工具(如markdown、json),可以很方便地抽取为任意格式。MinerU诞生于书生-浦语的预训练过程中,我们将会集中精力解决科技文献中的符号转化问题,希望在大模型时代为科技发展做出贡献。为什么要把PDF转化为markdown
- 【数据可视化应用】绘制类别插值地图(附Python代码)
文宇肃然
可视化工具数据分析实战应用python机器学习sklearn
sklearn.KNeighborsClassifier()终于这篇推文将机器学习和可视化完美的结合起来,即:机器学习处理数据,数据可视化技术展现、美化数据(以后的深度学习部分也会延续这个风格,只不过比重不同而已)。首先,我们给出我们今天的数据:散点数据和四川省的地图文件,python读取操作如下:import pandas as pdimport numpy as npfrom sklearn.
- Mineru保姆级部署教程
哈拉斯
人工智能pythonpdf
目录1.拉取mineru代码2.安装magic-pdf3.下载模型文件1.从modelscope下载模型(推荐)2.从HuggingFace下载模型4.修改配置文件以进行额外配置(针对想使用GPU加速的同学)5.demo测试MinerU是一款将PDF转化为机器可读格式的工具(如markdown、json),可以很方便地抽取为任意格式。1.拉取mineru代码地址:GitHub-opendatala
- Python简单使用MinerU
MasonYyp
python开发语言
Python简单使用MinerU1简介MinerU是国产的一款将PDF转化为机器可读格式的工具(如markdown、json),可以很方便地抽取为任意格式。目前支持图像(.jpg及.png)、PDF、Word(.doc及.docx)、以及PowerPoint(.ppt及.pptx)等。#官网地址https://mineru.readthedocs.io/en/latest/index.html#G
- 用Python打造智能宠物:强化学习的奇妙之旅
Echo_Wish
Python笔记Python算法python宠物人工智能
友友们好!我是Echo_Wish,我的的新专栏《Python进阶》以及《Python!实战!》正式启动啦!这是专为那些渴望提升Python技能的朋友们量身打造的专栏,无论你是已经有一定基础的开发者,还是希望深入挖掘Python潜力的爱好者,这里都将是你不可错过的宝藏。在这个专栏中,你将会找到:●深入解析:每一篇文章都将深入剖析Python的高级概念和应用,包括但不限于数据分析、机器学习、Web开发
- hdfs原理
raining_time
hdfs原理hdfs读写原理hdfs优缺点hdfs安全模式hdfs常用命令
简介HDFS(HadoopDistributedFileSystem)Hadoop分布式文件系统。是根据google发表的论文翻版的。论文为GFS(GoogleFileSystem)Google文件系统。HDFS有很多特点:①保存多个副本,且提供容错机制,副本丢失或宕机自动恢复。默认存3份。(用空间换安全)②运行在廉价的机器上。③适合大数据的处理。多大?多小?HDFS默认会将文件分割成block,
- Python 实战:手语翻译系统——从视频到文本的智能转换
Echo_Wish
Python笔记Python算法从零开始学Python人工智能python音视频开发语言
友友们好!我是Echo_Wish,我的的新专栏《Python进阶》以及《Python!实战!》正式启动啦!这是专为那些渴望提升Python技能的朋友们量身打造的专栏,无论你是已经有一定基础的开发者,还是希望深入挖掘Python潜力的爱好者,这里都将是你不可错过的宝藏。在这个专栏中,你将会找到:●深入解析:每一篇文章都将深入剖析Python的高级概念和应用,包括但不限于数据分析、机器学习、Web开发
- Ubuntu安装Mysql8
编程小邢啊
ubuntuadblinux
因每个人的机器不同,可能出现的问题如下1.该案例中可能执行某些命令时会涉及到权限问题,可在命令前添加sudo后重试;2.某些文件或文件夹可能也会需要权限,可以尝试修改权限后重试sudochmod777文件或文件夹路径一、下载资源包进入/usr/local/目录cd/usr/local/在/usr/local/下执行,下载资源包wgethttps://downloads.mysql.com/arch
- 5月6(信息差)
Eqwaak00
信息差开发语言人工智能
一次预测多个token,Meta新模型推理加速3倍,编程任务提高17%https://hub.baai.ac.cn/view/36857LeetCode周赛超越80%人类选手,推理性能超Llama3-70B。✨我国量子计算机实现“四算合一”实现通算、智算、超算、量算的“四算合一”。1.特斯拉Optimus人形机器人进厂打工,娴熟分装电池、自我矫正,还能走更远了在过去的几个月里,特斯拉出色的制造团队
- 一文看懂语音识别 - ASR(基本原理 + 4个实现流程)
编程大乐趣
文章目录语音识别是什么?他有什么价值,以及他的技术原理是什么?本文将解答大家对语音识别的常见疑问。语音识别技术(ASR)是什么?机器要与人实现对话,那就需要实现三步:对应的便是“耳”、“脑”、“口”的工作,机器要听懂人类说话,就离不开语音识别技术(ASR)。语音识别已经成为了一种很常见的技术,大家在日常生活中经常会用到:苹果的用户肯定都体验过Siri,就是典型的语音识别微信里有一个功能是”文字语音
- 精准画像(Fine-Grained Profiling)
dundunmm
数据挖掘人工智能数据挖掘人工智能深度学习画像精准画像
精准画像是一种基于大数据、人工智能和机器学习技术的个性化建模方法,通过整合多源数据,深度挖掘个体或群体的特征,从而精准刻画用户(如学生、客户、员工等)的行为模式、兴趣偏好、能力水平及发展趋势。精准画像广泛应用于教育、金融、医疗、电商、智能推荐等领域。1.精准画像的核心要素精准画像通常包括以下核心要素:(1)多源数据融合:精准画像依赖于多模态数据,如行为数据(点击、浏览、购买、学习记录)、生理数据(
- 计算机组成原理————计算机运算方法精讲<1>原码表示法
光军ultra
计算机组成原理机器数组成原理
第一部分:无符号数和有符号数的概念1.无符号数计算机中的数均存放在寄存器当中,通常称寄存器的位数为机器字长,所谓无符号数,就是指没有fu5号的数,在寄存器中的每一位均可用来存放数值,当存放有符号数时,需要留出位置存放符号,机器字长相同时,无符号数与有符号数所对应的数值范围是不同的,以机器字长为16位为例,无符号表示范围为0~65535,而有符号数的表示范围为-32768到+327672.有符号数机
- Python 深度学习实战:聊天机器人
AI天才研究院
AI实战DeepSeekR1&大数据AI人工智能大模型Python实战大数据人工智能语言模型JavaPython架构设计
Python深度学习实战:聊天机器人关键词:Python、深度学习、聊天机器人、Seq2Seq、注意力机制、Transformer1.背景介绍近年来,随着人工智能技术的飞速发展,聊天机器人(Chatbot)逐渐走进了大众的视野。从简单的问答系统到如今能够进行多轮对话、情感分析的智能助手,聊天机器人在客服、娱乐、教育等领域展现出了巨大的应用潜力。深度学习作为人工智能领域的核心技术之一,为聊天机器人的
- 探索无限可能:使用Python LINE Bot SDK构建对话机器人
高慈鹃Faye
探索无限可能:使用PythonLINEBotSDK构建对话机器人去发现同类优质开源项目:https://gitcode.com/在这个数字化的时代,交互式的聊天机器人已经成为我们日常生活和工作中的一部分。通过LINE平台,我们可以利用强大的PythonLINEBotSDK轻松创建个性化的聊天机器人,并部署在Heroku云服务上,无论你是开发者新手还是经验丰富的程序员,都能快速上手。现在,让我们一起
- Centos7 安装vm tools 工具
智商堪忧网工
linux运维centos
为了方便centos7系统的学习,同学们在虚拟机中可以安装vmtools工具来进行虚拟机与实物机器进行软件的交互。这里运用到的知识点比较多,步骤也比较详细。VMware官方文档:在Linux虚拟机中手动安装VMwareTools一、检查并且卸载在系统中安装的vmtools卸载预装的open-vm-tools包,检测是否预装了open-vm-toolsyumlistinstalled|grepope
- 正则化是什么?
点我头像干啥
Ai人工智能神经网络深度学习
正则化(Regularization)是机器学习中用于防止模型过拟合(Overfitting)的一种技术,通过在模型训练过程中引入额外的约束或惩罚项,降低模型的复杂度,从而提高其泛化能力(即在未见数据上的表现)。核心思想是在拟合训练数据和控制模型复杂度之间取得平衡。一、常见的正则化方法1.L1正则化(Lasso回归)在损失函数中添加模型权重(参数)的L1范数(绝对值之和)作为惩罚项。特点:会倾向于
- Windows 7 下 TensorFlow 安装入门(PyCharm 版)
架构魔术
windowstensorflowpycharm编程
Windows7下TensorFlow安装入门(PyCharm版)TensorFlow是一个流行的开源机器学习框架,广泛应用于深度学习和人工智能领域。本文将指导您在Windows7操作系统上使用PyCharm安装和配置TensorFlow。以下是详细的步骤和相应的源代码。步骤1:安装Python首先,您需要安装Python。TensorFlow支持Python3.5-3.8版本。您可以从Pytho
- RAG 技术探秘:原理、架构与多领域应用实践全解析
hy098543
架构
一、引言1.1研究背景与动机随着自然语言处理(NLP)技术的飞速发展,大语言模型(LLM)在众多任务中展现出了强大的能力,如文本生成、问答系统和机器翻译等。然而,传统的大语言模型在知识存储和更新方面存在一定的局限性。一方面,模型的知识主要依赖于预训练阶段所接触的数据,这导致其知识更新滞后,难以应对快速变化的现实世界信息。例如,对于一些新出现的事件、技术或研究成果,模型可能无法及时给出准确的信息。另
- NVM安装速通使用手册(Windows版)NVM管理node版本命令手册 NVM使用手册
智绘前端
运维nodewindowsnode.js前端后端
nvm(NodeVersionManager)是一个用于管理Node.js版本的命令行工具。通过nvm,你可以在同一台机器上安装和切换多个Node.js版本,非常适合开发和测试在不同Node.js版本上运行的应用程序一、安装地址1.官方下载:(推荐选择nvm-setup.exe安装包,避免绿色版路径问题)下载地址:GitHubnvm-windows最新版2.站内下载下载地址:nvm-setup-1
- 机器学习周报第39周
Ramos_zl
机器学习人工智能
一、文献阅读论文标题:ObjectDetectioninVideosbyHighQualityObjectLinking1.1摘要与静态图像中的目标检测相比,视频中的目标检测由于图像质量下降而更具挑战性。许多以前的方法都通过链接视频中的相同对象以形成管状结构,并在管状结构中聚合分类得分,从而利用时间上下文信息。这些方法首先使用静态图像检测器来检测每帧中的对象,然后根据不同帧中对象框之间的空间重叠情
- 【网络安全】AWS S3 Bucket配置错误导致敏感信息泄露
秋说
web安全aws漏洞挖掘
未经许可,不得转载。文章目录前言技术分析正文前言AWS(AmazonWebServices)是亚马逊公司提供的一个安全的云服务平台,旨在为个人、公司和政府机构提供计算能力、存储解决方案、内容交付和其他功能。作为全球领先的云服务提供商之一,AWS提供了广泛的云计算服务,包括计算、存储、数据库、机器学习、人工智能、分析和互联网应用等多个领域的服务。AmazonS3(AmazonSimpleStorag
- 学习c语言第三天3.30打卡
xc19086509154
学习c语言c++
自我介绍本人是一名大二在读专科生,在读工业机器人技术专业,因为我们的专业对C语言有需求但是学校又不教,于是很幸运的认识了鹏哥,有鹏哥带着我一起学习C语言,今天是我学习打卡的第一天,我想写下一些计划。学习目标我想通过这次的学习,可以独立的进行一些机械专业独立编程,例如通过代码控制小车的前进后退转弯,能够写一些简单的脚本,我希望通过我的努力变得更好!学习方法通过跟着鹏哥的网课学习打好基础,课后跟着鹏哥
- 计算机基础
打工人很惨
软件自动化测试
第一课计算机基础1:计算机组成部分计算机组成指的是系统结构的逻辑实现,包括机器机内的数据流和控制流的组成及逻辑设计等。主要分为五个部分:控制器,运算器,存储器,输入设备,输出设备。计算机组成的任务是在指令集系统结构确定分配给硬件系统的功能和概念结构之后,研究各组成部分的内部构造和相互联系,以实现机器指令集的各种功能和特性。这种联系包括各功能部件的内部和相互作用。计算机组成要解决的问题是在所希望达到
- 深入详解自然语言处理(NLP)中的语言模型:BERT、GPT及其他预训练模型的原理与应用
猿享天开
人工智能数学基础专讲人工智能自然语言处理
【自然语言处理】——深入详解自然语言处理(NLP)中的语言模型:BERT、GPT及其他预训练模型的原理与应用自然语言处理(NLP)是人工智能(AI)领域中的重要分支,旨在通过计算机处理和分析自然语言数据,使机器能够理解、生成并与人类语言进行交互。近年来,基于深度学习的预训练语言模型(如BERT、GPT)在NLP任务中表现出了巨大的成功,它们改变了传统NLP技术的发展路径,推动了文本理解和生成技术的
- Data+AI下湖仓一体到底有什么价值?
大数据AI智能圈
大数据人工智能人工智能大数据数据仓库数据治理数据湖
Data+AI下湖仓一体到底有什么价值?前言什么是湖仓一体?为什么企业需要湖仓一体?湖仓一体解决的实际痛点及其价值数据孤岛问题:打破信息壁垒数据治理和质量控制的挑战实时分析与高效存储:兼得不是难题降本增效:减少架构复杂性,提升运营效率支持AI与机器学习的全面落地企业实践与收益分析某电商平台的智能推荐系统某金融机构的风险控制体系某制造企业的供应链优化湖仓一体的综合效益结语前言湖仓一体到底是什么?对不
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数