Where storage lives

  1. Registers. This is the fastest storage because it exists in a place different from that of other storage: inside the processor. However, the number of registers is severely limited, so registers are allocated by the compiler according to its needs. You don’t have direct control, nor do you see any evidence in your programs that registers even exist.
  2. The stack. This lives in the general random-access memory (RAM) area, but has direct support from the processor via its stack pointer. The stack pointer is moved down to create new memory and moved up to release that memory. This is an extremely fast and efficient way to allocate storage, second only to registers. The Java compiler must know, while it is creating the program, the exact size and lifetime of all the data that is stored on the stack, because it must generate the code to move the stack pointer up and down. This constraint places limits on the flexibility of your programs, so while some Java storage exists on the stack—in particular, object references—Java objects themselves are not placed on the stack.
  3. The heap. This is a general-purpose pool of memory (also in the RAM area) where all Java objects live. The nice thing about the heap is that, unlike the stack, the compiler doesn’t need to know how much storage it needs to allocate from the heap or how long that storage must stay on the heap. Thus, there’s a great deal of flexibility in using storage on the heap. Whenever you need to create an object, you simply write the code to create it by using new, and the storage is allocated on the heap when that code is executed. Of course there’s a price you pay for this flexibility. It takes more time to allocate heap storage than it does to allocate stack storage (if you even could create objects on the stack in Java, as you can in C++).
  4. Static storage.“Static” is used here in the sense of “in a fixed location” (although it’s also in RAM). Static storage contains data that is available for the entire time a program is running. You can use the static keyword to specify that a particular element of an object is static, but Java objects themselves are never placed in static storage.  
  5. Constant storage. Constant values are often placed directly in the program code, which is safe since they can never change. Sometimes constants are cordoned off by themselves so that they can be optionally placed in read-only memory (ROM), in embedded systems.
  6. Non-RAM storage. If data lives completely outside a program, it can exist while the program is not running, outside the control of the program. The two primary examples of this are streamed objects, in which objects are turned into streams of bytes, generally to be sent to another machine, and persistent objects, in which the objects are placed on disk so they will hold their state even when the program is terminated. The trick with these types of storage is turning the objects into something that can exist on the other medium, and yet can be resurrected into a regular RAM-based object when necessary. Java provides support for lightweight persistence, and future versions of Java might provide more complete solutions for persistence.

总结:

1. Java对象中的数据可以是static的,但是对象本身是不可以为static的。

2.  Java中不用new创建的,而是使用基本数据类型,比如int,float等创建的变量是 “automatic” variable ,他们不是reference,存放的位置不在heap中,而在stack中,除此外,对象应该是放在heap中的

你可能感兴趣的:(Where storage lives)